wireless
 world

200 MHz frequency meter Low-cost satellite reception Sound generator ito

AM/FM Signal Generator TF 2016 is a general purpose instrument for receiver testing. Its facility for battery operation and its rugged construction make it ideal for field as well as factory use

TF 2016 will deliver up to 4 V e.m.f. and yet has a leakage level that is so low that even receivers with a sensitivity of $0.1 \mu \mathrm{~V}$ can be tested without ambiguity. And the total output level accuracy of $\pm 1 \mathrm{~dB}$ ensures
nfidence every time.
Fundamental frequency generation is used over the entire frequency range thus ensuring the total absence of non-harmonics. The good tuning discrimination makes arrow band receiver testing quick and easy.

Amplitude modulation up to 100% modulation depth and frequency modulation up to 75 kHz deviation re available using the internal 400 Hz and I kHz on be applied and equired, internal a.m. and external f.m., or internal f.m.
and external a.m., can be applied simultaneously. A version of TF 2016 will shortly be available equipped with a 150 Hz preset pilot tone f.m. for use on nsman receivers.
Pulse Modulator, TF 2169, may be fitted to the signal generator to provide pulsed r.f. for radar i.f. testing. IF probes can be supplied to help tuning to eceivers fitted with battery economizer circuits. Alternative output level calibration plates, matching pads, ttenuators and r.f. fuse units are included in the wide range of optional accessories.

Digital Synchronizer

The addition of this clip-on unit (as shown in our photograph) converts the TF 2016 into a synthesizer. provides a stability of \pm I part in 10^{6} and allows the equency to be set in 10 Hz steps.

Full information gladly supplied on request.

mi MARCONI INSTRUMENTS

Marconi Instruments Limited - Longacres • St. Albans - Hertfordshire - England AL4 0jN • Tel: (0727) 59292 - Telex: 23350
 Marconi Instruments - 32 avenue des Ecoles - 91600 Savigny-Sur-Orge France - Têl: 996.03 .86 . Télex: $600541 . \mathrm{F}$

wireless world

IN OUR NEXT ISSUE High quality audio pre amplifier. A development
Douglas
Self's
 but with an active gain control and
ive to build. Milestones in elec tronics, an interview Tellegen, inventor of the pentode, discoverer of
the Luxembourg Effect the Luxembourg Effect and pio
tor.
The lea
The lean years. Sunspot activity is now in
creasing. Unusual col ured charts show this activity over the past few ears in relation to critica
Currant issue price 40 p. back issue
(if available) 50 p at
. if availabee) 50p. at Retail and ion SE 1 . Available òr microfiim
By post, current issue 55 p , back
issues (if available) 50
50 issues (if avaiiable) 50p. order and
payments to Room CP34, Dorse House, London SE1 9LU. Editorial \& Adverisising offices
Dorset House, Stamford Street. London SE19LU. Telephones: Editorial 01-261
8620 Adverising $01-261839$. Thelgrams T/elex: Wiworld Bis
tespres 25137 BISPR hespres 25137 BISPRS
Cables: Ethaworld, London SE1 Subscription rates: 1 year: $\varepsilon 7.00$ Student ra 1 year, $£ 3.50$ UK and $£ 4.50$ overseas ($\$ 111.70$ US Distribution: 40 Bowling Green
Lane, London EC1R. ONE Lene, London Subscriptions: Oakfield House,
Perrymount Road. Haywards. Perrymount Road, Hayward
Heath, Sussex. RH 16 3DH,
 notity a hange of address.
 New York,
ibpa ABC

37 The death delivery business

38 Low-cost satellite receiving techniques
43 A low-cost digital frequency meter

47-News of the month
Electronics implants for hie dear wiews aired
Simple intercom Circuit ideas

53 Versatile sound generator

57 Surround-sound patents
by Adrian Hope

Engineers, get out of Britain Synthesized f.m. transceiver

66 World of amateur radio

67 Electronic organ tone system - 3 by A. D. Ryder

3 Alphanumeric keyboard

76 Add-on oscilloscope waveform store
osciloscope waver
by R. H. Fastner

81 Character rounding for the WW teletext decoder
by J. H. Hinton
83 Microcomputer design - 6

88 New products

90 Sideband

In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten.
But it's fundamental to the very existence of communications recording to be able to
replay a selected portion of tape to find out what was said by who, to whom \ldots. . and when.
And when can be vital.
Equally vital), particularly in emergencies when every second counts, is the ability to obtain such replay access rapidly, precisely, automatically. With absolute certainty - and without time-consuming multiple knob-twiddling aided by guesswork. Racal-Thermionic has recognized this need and produced TIMESEARCH - designed providing just these facilities.
TIMESEARCH can generate a coded time reference signal of crystal accuracy and index it onto the tape. It can read and display that signal. It can search a tape at high seed for a pre-selected time signal and automatically initiate replay at that time. the past. And when you need to recall the past with precision, you need TIMESEARCH

Racal-Thermionic the recording people ZH. England. Telephone: 0703 843265. Telex: :4766
Ww-035 FOR FURTHER DETAILS

HACEAL

DON'T GAMBLE

 WITH PERFORMANCE
BUY

LEVELL TESTERS

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are 100 V are 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector toand 100 mA for $\mathrm{I} / I_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is battery.
TRANSISTOR RANGES (PNP OR NPN)
Сво ${ }^{\text {\& }} \mathrm{I}_{\text {Eво }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s. d $\mathrm{cc} . \pm 2 \% \mathrm{f}$.s.d. $\pm 1 \%$ at Voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$
$10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 4 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$ 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to
$10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
10 V or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ a
$I_{B}: \quad 10 n A, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ $10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $.2 \%$

3 inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{\mathrm{BE}}: \quad 1 \mathrm{Vf.s.d}$. acc. $\pm 20 \mathrm{mV}$ measured at condition
$V_{C E(\text { sat })}: \quad 1 \mathrm{~V}$ f.s.d. acc. +20 mV at collector currents of 1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of
$1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{C}_{\mathrm{C}} \mathrm{I}_{\mathrm{B}}$

DIODE \& ZENER DIODE RANGES
$\begin{array}{ll}\mathrm{DR}_{R}: & \mathrm{As}_{E B O} \text { transistor ranges. } \\ \mathrm{V}_{\mathrm{Z}}: & \text { Breakdown ranges as } B \mathrm{BV}_{C B O} \text { for transistors. }\end{array}$
$V_{D F}: \quad 1 V$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at $I D$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$,
$100 \mathrm{AA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA.

A logarithmic scate covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a
maximum value of 3 mA for safety and capacitors are maxtomatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.
RESISTANCE RANGES
$0 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V . $10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current beiween $500 \mu \mathrm{~A}$ and 3 mA . CURRENT RANGE
100pA to $100 \mu A$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indic ated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
MEASUREMENT TIME
<3 s for resistance on all ranges relative to CAL position. <3 s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . < 10 s for resistance of time to 1% is 0.1 s per μ F on CAL position. RECORDER OUTPUT
V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.
)

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K

Prices are each
net \＆excludeV．A．T．
Experimentor Series
EXP300（ 6×2.1 in． 5×94 terminals
$\& 2$ bus strips $)$
EXP350 $(35 \times 2.75$
EXP350（ $3.5 \times 2.1 \mathrm{in}$ ．， 5×46 terminals
EXP600（ 6×2.4 in．， 5×94 terminals

EXP650 $(3.6 \times 2.4$ in．， 5×46

Quick Test Series
OT． 595 （ $6.5 \times 6.2 \mathrm{in} ., 118$ terminals）$£ 7.20$

QT． 355 （ 4.1×3.8 in．， 70 terminals）$£ 4.90$
OT． $18 \mathrm{~S}(2.4 \times 2.1$ in．， 36 terminals）$£ 2.75$
OT． $8 \mathrm{SS}(1.4 \times 1.1 \mathrm{in}$..16 terminals）$-£ 2.15$
OT． 7 S （ 1.3×1 in．， 14 terminals）$-£ 1.75$
QT．59B $(6.5 \times 6.2$ in．， 20 terminals）$£ 1.45$
$\begin{array}{ll}\text { AT．47B }(5.5 \times 5 \text { in．，} 16 \text { terminals）} & £ 1.30 \\ \text { OT．35B（4．1 } \times 3.8 \text { in．，} 12 \text { terminals）} & \\ £ 1.15\end{array}$
Protoboard Series
PB－6（ 630 tie points， 4 binding
PB－ $100 \begin{gathered}\text { posts，} 4 \times 14 \mathrm{DIL} \text { capacity）} \\ (760 \text { tie points，} 2 \text { binding }\end{gathered}$
posts， 10×14 DlL capacity）$£ 1$
PB－101 1940 tie points， 1 binding
PB－102 $\begin{aligned} & \text { post，} 10 \times 14 \text { DIL capacity）} \\ & (1240 \text { tie points．} 1 \text { binding }\end{aligned}$
－．post， 12×14 DIL capacity）
PB－103（ 2250 tie points， 4 binding
PB－104 $\quad \begin{gathered}\text { Posts，} 24 \times 14 \text { DIL capacity }) \\ (3060 \text { tie points，} 4 \text { binding })\end{gathered}$
PB－104（3060 tie points， 4 binding
PB－203 $\underbrace{(2250 \text { tie points，} 4 \text { binding }}_{\text {posts，} 32 \times 14 \text { DIL capacity })}$ （225t tie points， 4 binding
posts， 24×14 DIL capacity： built－in regulated 5 V d．c． power unit）
PB－203A（As PS－ 203 with 5 V and
15 V d．c．power supply）
Design Mate Instruments
DM－1 £45．95 DM－2 £57．45 DM－3 $£ 57.45$
DM－4 474.70
IC Test Clips
PC． 14 （14－pin）$£ 2.60 \quad$ PC． $16(16$－pin）$£ 2.75$
PC－24（24－pin）$£ 4.90$
PC－40（40－pin）$£ 7.90$
Logic Probes
Hand held logic probes，
TTL／DTL／CMOS compatible，
from
Logic Monitors for
CMOS，HTL，DTL，TTL \＆RTL
LM－1 Self．power clip－on logic
LM－2 $\begin{aligned} & \text { monitor } \\ & \text { As LM－1，with fully isolated }\end{aligned}$ $£ 28.70$ power supply £68．95
Postage，Packing and Insurance per
shipment f 1.25 Shipment E1． 25
Please add 8% VAT to overall total
Export orders ：credit cards or inter Export orders：credit cards or international
money orders money orders，bank drafts and cheques
drawn in $£$ sterling Please add 10%（ drawn in $£$ sterling．Please add 10%（Europe）
or $12 \% \%$（all other countries）to total price．

Now，from the breadboard specialists－ even better boards！
 Since the appearance of the first breadboards back in the＇ 40 ＇s，

 we＇ve really been going places．（The U．K．，for one．） So we now have an exceptional range of prototyping products reliability．Just see．（And for prices and specs．，eyes left！）
Ex Lo Lint sol the to o． 0 5

Experimentor Series． ow－cost，
interlockin olderless bre
solderless breadb
the worlds first
for 0.3 in ．and
6 in．pitch DIPs
The Protoboard Series．
Solderless breadboards with built－in 10% regulated 5Vd．c． 1 A power supply； 2,250 solderless tie points
and capacity for DIPs of 14 to 40 pins． Low－cost，snap－locking solderless circuit boards for fast design with discrete components．

Continental Specialties Corporation（U．K．）Ltd．，Unit 1，Shire Hill Industrial Estate，Dept．7H
Saffron Walden，Essex．CBII 3AQ Telephone（ 0799 ） 21682 Telex 817477 Reg．in London： 1303780 VAT No： 2248074 71．＊Trade Mark applied for © CSC（UK）Ltd． 1977 Dealer enquiries welcome．
Please supply
\qquad Address
My cheque／postal order No \qquad for $£$
 ＿－is enclosed

5

Peace and quiet
 The quietest sound the ear can hear moves

 the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diamete of a hydrogen molecule. Movement due to random thermal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*But the distortion contribution from a QUAD 405 amplifier in normal use (say 85dBa) moves the eardrum less than this amount

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear thembut "'tis bitter cold."

For further details on the fuill range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd Huntingdon, PEl8 7DB. Tel: (0480) 52561.
*Sensitivity is never made more acute by the presence of other sounds

QUAD

for the closest approach to the original sound

QUAD is a Registered Trade Mark

We've made the impossible AGAIN. A superior frequency counter Kit for only $£ 69.95$

Now you can forget about price:/performance trade-offs when you get all the characteristics of a much higher-priced counter Yor only $£ 69.95$.
This
Trequency
This frequency counter, employing LSI t technology, has the performance and input characteristics you demand: guar
frequency range of 20 Hz to 100 MHz ; selectable hi/ $/ \mathrm{O}$ impedace: superior sensitivity, sele ectable ele esolution and
selectable
 leading zero suppression and overiflow indiciator You would
eneet
It it expect to find all these features only on high-priced instruments
-or from Sabtronics 'advanced digtal technoiogy.

Uncompromising

 performance.Incredible price.
A professional $3 \frac{1}{2}$ digit DMM Kit for less than

$£ 50.00$

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable/bench DMM which offers such uncompromising performance at the astonishingly low price of $£ 49.95$.
Uncompromising performance you'd expect only from a speeialist in digital technology such as Sabtronics:
Basic 28 ranges; readings to ± 1999 with 100% overrange; ove range ind
The low
The low price of $£ 49.95$? Simple: The Model 2000 is al
solid-state, incorporating a single LSI circuit and high-solid-state, incorporating a single LSI circuit and high-
quality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly m.
Kit is complete, including a high-impact case.
Now you too can have it! A professional-quality $3 \frac{1}{2}$ digit Sabtronics Model 2000 DMM kit for only 449.95 . If you don't ave one in your lab, use the coupon below to order NOW. Easy to follow calib
assembly manual.
BRIEF SPECIFICATIONS:
DC volts in 5 ranges: $100 \mu V$ to $1 \mathrm{kV}-\mathrm{AC}$ volts in 5 ranges
$100 \mu \mathrm{~V}$ to $1 \mathrm{kV}-\mathrm{DC}$ current in 6 ranges: 100 nA to 2 A -
$100 \mu \mathrm{~V}$ to 1 kV -DC current in 6 ranges: 100 nA to 2 A
AC current in 6 ranges: 100 nA to 2 A -Resistance:

$(203 \times 165 \times 76 \mathrm{~mm})$-Power requirement: 4 " $C^{\prime \prime}$ cells
not included).
Ordering information for overseas readers:
The price listed is for readers in U.K. only. Since export
orders are exempt from VAT you may send your orders orders are
directly to
Sabtronics Internation
Winkelriedstrasse 35
Price:
Price:
$£ 69.95+£ 6.50$ for shipping and handling for Model 8100
$£ 49.95+£ 6.50$ for shipping and handling for Model 2000

$$
-1994
$$

需宿

RIEF SPECIFICATTIONS:
Frequency Range: 20 Hz to 100 MHz guaranteed, (10 Hz to 120
MHz typical) - Sensitivity: 25 mV RMS, 20 Hz to $70 \mathrm{MHz}(20 \mathrm{mV}$ Hz typical) - Sensitivity: 25 mV RMS, 20 Hz to MHz (20 typical); $45 \mathrm{mV} \mathrm{RMS}, 70 \mathrm{MHz}$ to $120 \mathrm{MHz}(30 \mathrm{mV}$ typical)-
Selectable 1 mpedance: $1 \mathrm{M} \Omega 125 \mathrm{pF}$ or 50Ω-Attenuation:
S
 Aging Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}-$ Temperature Stability: $\pm 10 \mathrm{ppm}$, Display: 8 -digit LED, floating DP, overflow indicator-
Also available assembled at $£ 84.95$.
Optional prescaler will be available from around January 1979,

sabtronics

TIMWOOD LTD. Prospect Road, Cowe
Isle of wight, England: Telex 86892 .
Please send me \quad Sabtronics Model 2000 DMM
Pre

plus VAT at 8%.
Total enclosed herewith: $£$
Name:
addres
\qquad

$$
\begin{aligned}
& \text { City:_-_Postal code:-} \\
& \text { * Overseas readers please see ordering information }
\end{aligned}
$$

on this page.

The world overYou get the best service from Haltron

For high quality electronic valves semiconductors and integrated
circuits - and the speediest serv circuits - and the speediest service -
specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron users throughout the worlid. Haitron product confirmed. The product range is very. very wide. And Haltron expor expertise will surely meet your requirements. Wherever you are, get
the best service. From Haltron.

Hall Electric Limite Telephone: Orpington 27099
Telex: 896141

ก7สํㄴㅐㅔ : lounch their new Calologue... *

A massive new catalogue

 from Maplin that's eve bigger and better thanbefore. Il you ever buy electronic components, you must not be without. Over 240 pages-some in iull colour-it's a electronic components with hundreds of photographs and illustrations and page data:

We stock just about every useiulcomponentyou can think of. In fact some
5.000 different lines of them hard to get from anywhere else. Over 1000 new lines in our new catalogue And with the service only Maplin
provides, you won't regret sending tor a copy of our lantastic catalogue. Orders paid before
publication date will publication date will receive a set Big Discounts on popular IIfes.
lig Discounts on popular

กกณค내ํ
 Electron House
Gray Avenue, St. Mary Craw Orpington, Kent BR5 30J. Telex: 896141

YOUR COMPLETE RANEE OFELECTRONIC HARDWARE...

BiMTOOLS

mains bimdrills
Small, powerful 240 V hand drill complete with 2
metres of cable and 2 pin DiN plug Accents all metres of cable and 2 pin DIN Plug. Accepts all
tools
trass sith $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or. 125 "
ia. shanks. Drill

Mains Accessory Kit
and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops,
burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$
collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ £22.14
12 Volt bimbrills
$\begin{aligned} & 2 \text { small, powerful drills easily hand held or used with } \\ & \text { lathestand adaptor. Integral on/ off switch and } 1 \\ & \text { metre cable. }\end{aligned}$
$\begin{aligned} & \text { Mini BIMDRILL with } 3 \text { collets up to } 2.4 \mathrm{~mm} \text { dia } \underset{\text { ¢ }}{\mathrm{f}} 8.10 \\ & \text { Major BIMDRILL with } 4 \text { collets up to } 3 \mathrm{~mm} \text { dia } \\ & £ 13.60\end{aligned}$
$\begin{aligned} & \text { Accessory Kits } 1 \text { have appropriate drills and collets as above plus } 20 \\ & \text { assorted tools. Mini Kit } 1-£ 15.12 \text {, Maior Kit } 1-£ 19.44 \text {. }\end{aligned}$
$\begin{aligned} & \text { Accessory Kits } 5 \text { have appopopriate drills, collets plus } 40 \text { tools and mains } \\ & 12 \mathrm{~V} \text { dc adapor. Mini Kit } 2-£ 34.02 \text {, Major Kit } 2-£ 39.42 \text {. }\end{aligned}$
$\begin{aligned} & \text { Accessory Kits } 3 \text { as appropriate Kits } 2 \text { plus stand/lathe unit. Mini Kit } \\ & 3-£ 45.36 \text {, Major Kit } 3-\mathrm{E} 50.76 \text {. }\end{aligned}$

BIMENCLOSURES (Bimboxes, Bimconsoles and Bimcases) BIMTOOLS (Bimirons, Bimdrills, Bimsnips, Bimpumps, Bimdips) BIMACCESSORIES (Bimfeet, Bimdaptors) BIMDICATORS BIMBOARDS

BIMDICATORS

 $6 \mathrm{~V} £ 0.54$ each, $14 \mathrm{~V} £ 0.58$ each, $28 \mathrm{~V} £ 0.65$ each
State Voltage, lens style, colour and whether tags or flying leads.

 supplied) plus chrome bezel with A lens.
Red, Amber, Clear, Green; Opal $£ 0.66$ each
Esfminumithe G SERIES
 n blades. 13 mm dia. lens with 19 mm dia. chrome bezel.
M(A) (M) and Polycarbonate (MP) ind icators, 150 mm leads, Low voltage nickel plated brass 6.9 mm dia. lens $(\mathrm{M}) 6 \mathrm{~V} £ 0.65$ each, $14 \mathrm{~V} £ 0.68$ each, $28 \mathrm{~V} £ 0.79$ each
7.5 mm dia. lens $(\mathrm{MP}) 6 \mathrm{~V} £ 0.55$ each, $14 \mathrm{~V} £ 0.59$ each, $28 \mathrm{~V} £ 0.68$ each

bim m led series Nickel plated brass bodied LES indicator, 21 mm wire
wrappabie leads, 6.5 mm fixing hole, 2 styles, $6,8 \mathrm{~mm}$ dia

Both lenses ' D ' are square
BIM LM \& MM LED SERIES
Subbiniature nylon bodied LED indicators with
12 mm wire wrypapable leads
$4.5 \mathrm{~mm} \& 4 \mathrm{~mm}$ holes
respectively. Each series has 4 lens styles in
Red $£ 0.67$, Green $£ 0.83$, Yellow $£ 1,00$ each.
BIM 23,26 \& 56 Led SERIES

BIMACCESSORIES

BIMBOARDS

 resistors, diodes,
capacitors and
Inteo
Interal Bus Strips Integral Bus Strip
up each side for
power lines and power lines and
Component Suppo Component Support
Bracket for holoting
lamps. swithe and
fuses etc. Availiable as single. or mulatioliele
ted on $1.5 m$ thic
olate which stand on Units, the latter mounted on 1.5 mm thick non slip rubber feet and have 4 scre
terminals for incoming power.

BIMBOARD 1 has 550 sockets, multiple units utilising 2, 1650 and 2200 sockets, all incorporate (0.1") matrix,
BIMBOARD 1 £ 8.83 BIMBOARD 1 £ 8.83 BIMBOARD 2 £ 21.01 BIMBOARD 3 £29.84 BIMBOARD 4 £ 38.79
designer protot yping system 1, 2, or 3 BIMBOARDS mounted on BIM 6007
 Alock protection. Powed rais brounh out to coble
alamps that accept stripped wire ort 4 mm plug. $\begin{array}{ll}\text { DESIGNER } & \text { E55.62 } \\ \text { DESIGER } \\ \text { DES } \\ \text { ET1.02 }\end{array}$
...FROM

2 Herne Hill Road, London SE24 0AU
Telephone: 01-737 2383
Telex: 919693 Answer Back 'LITZEN G' Cables \& Telegrams: 'LITZEN LONDON SE24

NEC
RADIO
COMMUNICATION
NIPPON ELECTRIC EQUIPMENT

CEC
sole distributor europe of NEC

Only Valves are good enough for this customer.
As the demand for high quality sound increases,
so does the need for M -OV valves. Valves, and only valves, can provide the level performance many listeners now demand.
M-OV Beam Tetrode KT77 and KT88 valves met 11 audio market requirements from 30-200 watt ultra linear. KT88 is a proven long-life val
that is at home in your quality hat is at home in your quality quipment.
Get in to
technical data and details of
worldwide distribution.
MOV
gac
THEM-O VALVE CO LTD, HAMMERSMITH, LONDON, ENGLAND W6 7PE.
TELEPHONE O1-603 3431. TELEX 23435. GRAMS THERMIONIC LONDON
WW-053 FOR FURTHER DETAILS

From Bell \& Howell, exclusive distributors of JVC video products to the educational industrial and institutional markets.

Bell\&Howell introduce new ENG and off-line equipment from JVC

The new CY8800E 3-tube portable camera is designed to proven JVC colour dub system ensure successful cópies be hand held. With a choice of $2 / 3^{\prime \prime}$ Plumbicon or Saticon tubes, it is the latest product of JVC's 21-year involvemen With a 49 dB S/N ratio at $f / 4$ and only 3000 lux illumination, the camera can also be used in light levels as low as 300 lux. Pictures through the $10: 1 \mathrm{f} / 1.9 \mathrm{C}$-mount zetter than, 500 lines horizontal centre resolution. A wide range of facilities and compact packaging enable cameramen to provide shots of virtually any scene, indoors or on location. Standard features include a $1 / 1 /{ }^{\prime \prime}$ viewfinder
with $3^{\prime \prime}$ magnifier, 3 -way sensitivity switch (normal $+6 d B$ +12dB); auto white balance, bias lighting when fitted with
, Saticon tubes and buitt-in colour bar generator for fast alignment. Weight including lens and viewfinder is only 9.6 kg
For location work the well-respected JVC CR4400LE U-format portable recorder is an ideal companion, usable up to 12 metres away. The whole system operates from internal batteries or external power.
cassette recorder is designed to make editing simpo cassette recorder is designed to make editing simple and
fast. Automatic variable speed playback in forward and reverse ensures accurate access to the exact edit point.
Fully framed edits with an accuracy of ± 2 frames and the
every time.
Together with the RM85E, two CR8500Es form a first logether with the RM85E, two CR8500Es form a first-
class edit suite for off-line or $3 / 4^{\prime \prime}$ master editing. All transport class edit suite for off-line or $3 / 4$ master editing. All trans From pressing the play button, video and audio head contact with the tape is maintained to enable any mode to be instantly selected. Location on the tape is constantly monitored by counting control track pulses, ensuring out times can be programmed and memorised for automatic assemble or insert editing and the precise preview mode before a commitment to record is made The video and audio tracks may be separately or simultaneously edited in any combination. The CR8500E brings a new degree of flexibility to the $3 / 4^{\prime \prime}$ format; the CY8800E brings it to portable cameras. If you
would like further information on JVC video equioment, use wourd ile further information on A-V Ltd., Freepost (no stamp required), Wembley Middlesex HA01BR.

BelleHowell

When it's a question Of ATE.

Plesselatiti 10 is your buili-in guarantee.

OVER SEVENTY STANDARD FREQUENCIES

TENS OF THOUSANDS STOCKED

DELIVERY FREE WORLD-WIDE

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g
ww - 016 For further detalls

a
Send now for details of the superb Jensen range of tools, meters and accessory equipment, all in the most handy and
robust cases - also available separately. Jensen products are robust cases - also available separately. Jensen product
specifically designed for industrial use, perfect for all engineers, technicians, electricians, instrument repairmen etc. Choice of more than twenty kits and cases.
Write for free Jensen catalogue to:
SPECIAL PRODUCTS DISTRIBUTORS LTD,

Plessey ATTS 10 is one of the latest developments in the
Plessey rance of telegraph Plessey range of telegraph margin and distortion testers. Combining signal generator and measuring set, ATTS 10 is designed for installation in a telex exchange or other communications centre. Fully automatic, ATTS is controlled from the keyboard of the teleprinter under test and provides test sequences to one of fourteen instructions. This enables the
to be rapidly assessed.

ATTS 10 operates to International Alphabet no. 2 at one pre-set link-selected speed in the range of $50,75,100,110,150$ 200 and 300 bauds.

The level of distortion applied to test messages and the level at which distortion is measured are both accurate to within $\pm 1 \%$.

ATTS 10 employs all solidstate circuitry, so it's rugged and reliable. It is designed for ww - ois for further details
long periods of unattended operation.

For full technical data on ATTS 10 and other Telegdata equipment contact Plessey

Plessey Controls Limited, Sopers Lane Telephone: (O2013) 5, BH17 7ER Telephone: (020 13) 5161 Telex: 41272

MODEL 756 FULL ASCII Low cost! KEYBOARD Assembled

Scopex vital statistics: 2% more in accuracy, around 20% less in price.

reliable high practical controls individually. powered modules
mains or dc optio mains or dc option single cases and up
oo 17 modules in standard $19^{\prime \prime}$ crate small size-low weight-realistic

ww-029 FOR FURTHER DETAILS

Greater accuracy, lower cost plus something more wide range covering dual trace, 10 and 25 MHz , long persistance, rack mounted - single trace 6 MHz , long persistance and battery portable models, plus a wide variety of accessories and probes.
The figure of 3% accuracy compares very favourably with the 5% claimed by our competitors. As does the Scopex reputation for producing reliable, easy to use oscilloscopes for just about every application.
Take the 4D - 10A dual trace model. Guaranteed 3\% accuracy achieved by a stabilised power supply including the EHT. $10 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$ sensitivity, TV field trigger and trace locate. £180.00
Or the 4D-25. Dual trace model with $\mathrm{DC}-25 \mathrm{MHz}$ bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. £285.00 *
For more detalls of these and the full Scopex range simply return the coupon. Remember what you gain in accuracy, you lose in price
U.K. list price excluding VAT

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$
days delivery. Other Ranges and days delivery. Other Ranges and special scales can be made to orde

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, w.C. 1 Phone: 01/837/7937 WW - 020 FOR FURTHER DETALLS

FOR POWER SEMICONDUCTORS

INR
INTERNATIONAL RECTIFIER

Diodes
 Thyristors

Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays
Silicon Stacks Surge Suppressors
IN A HURRY! 070-681 2601

HARMSWORTH,TOWNLEY \& CO. LTD. HAREHILL TODMÓRDEN LANCS OLi4 5 JY Phone: 0706812601 and 0706815246
Telex 635091 Albion G Attn: HARMSWORTH

Labgear Limited Abbey Walk Cabgridge CB1 2RO England
Telephone: 02236527 (7 lines T Texe: 81105 LAB 073 FOR FURTHER DETAILS

TL

Whatever it is, the $-\quad| |-$ 'S' range of power amplifiers will handle it

The
 'S' range is designed to handle heavy industrial usage in the fields of vibrator

 driving, variable frequency power supplies and servo motor systems.S500D
Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms per channel
900w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005\% harmonic distortion (typical) at

300w r.m.s. into 4 ohms at 1 KHZ
3KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel DC-20 KHZ at full power Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to Alternative input and output termination to
specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594
FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR

PRE-AMPLIFIER

 CP-P1Shown here mounted with is associated components (and the nection board: the CP-P1 is a complete stereo preamplifier and

 $\substack{\text { frequencies } \\ \text { facilities. }}$
CP-P1 £14.96 incl. (U.K.)
Also Availabe: Power Amplifiers, Filters, Stereo Image wiidith
Control, Compressor IExpander. Active Crossovers, Power Sup. Control. Compressor Expander
plies plus al pots, switches, etcic.
MRETUTI RUDIC LtJ.
DEPT W3, 13 HAZELBURY CRESCEN
 SEND LARGE S.A.E. FOR DETAILS

745 COUNTER TIMER DC-32 MHz
 FREqUENCY, PERIOD, TIME \& TOTALISE $\pm 5 \mathrm{ppm}$ STABILITY@ $25^{\circ} \mathrm{C}$

745 COUNTER TIMER $£ 97+\mathbf{£ 2 . 5 0}$ P \mathbb{Z} P


```
746 Autoranging freuvency Meter }
*)
OMB electronics, Riverside, Eynsford, Kent. Tel: 0322863567
```


THRULINE WATTMETER
The Standard of the Industry hat more need we sa

요 electronics limited

 2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9ÚRTELEPHONE:
$01-8681188$ - TELEX 8812727
ww $\rightarrow 041$ FOR FURTHER DETAILS

Top: The Signalmaster Mk8. Lower: The Audiomaster amplifier

 Audiomaster $£ 88.80$: the pair $£ 165$
WW-078 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION
Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:
\star very low distortion content-less than 0.03%
\star an output conforming to RIAA recording characteristic
\star battery operatión for no ripple or hum loop
$£ 70.00$
also available Si452 Distortion Measuring Unit

J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON. W. YORKS. BD19 5LA. Tel. 0274-872501

* Prices and quality no one else can match.
* All equipment sold calibrated to manufacturers' specification * Full inspection may be carried out at our premises.
* Full handbook and circuit diagrams supplied with each item. * Keenest prices offered for your own surplus equipment
26
26

THE CNIEC
 SIIUSOIDAL FREQUENCY AND VOLITGE STABILIZER

APPLICATIONS * soumprecording * VIDEORECORDLKG * MIDCA * maRTIE computers * NAYTCATOMAL SYSTEms

Aplition to the we oicity FREQUENCY \& VOLTAGE STABILIZER are
more numerous than can be listed. Therefore, if You have a supply problem, contact CINTEC
LIMITED whose engineers will be only too
pleased to assist SPECIFICATION

* 500VA OR 250VA
* SOLID STATE
* HIGH STABILITY
* ROBUST
* VERSATILITY
* RELIÁBILITY * SINUSOIDAL

Reliable Frequency \& Voltage Stabilization
The efficent operation of sophistiThe efficent operation of sophisti-
cated electrical and electronic equipment is, in many instances, dependent upon an electrical supply which is stable in both frequency and voltage.
In many countries and even in the United Kingdom during periods of heavy demand, the variation in the frequency and voltage is sufficient to
introduce errors and the malfunction of such items as Recording equipment etc. Likewise, in certain areas, the only source of supply is from a Generator, the output of which can vary considerably when different the use of a wide range of equipment in many countries. Voltage Stabilizers are readily available but these do not stabilize the frequency of the supply

The CINTEC FREQUENCY \&
VOLTAGE STABILIZN VOLTAGE STABILIZER pravides When the supply frequency is fluctuating tage by more than 10% the output from the
Stabilizer tage by more than 10% the output from the
Stabilizer will not tary more than. $01 \% \%$ from
50 Hz or 1% in voltage, even when different 5 OHz or 1% in voltage, even when different
loads are imposed.
Used by Government establishments, oil
rigs hospitals, police, video and electronic rigs, hospitals, oplice, video and electronic
industry, shipuuilders ett, for a wide range of
applications including video systems, medical industr, shipbuilders etc. for a wide range of
applications including video systems, medical.
frequency convers. applications including video systems, medical,
frequenc conversion, navigational aids and
sound recording systems.
The CINTEC FREQuENCY \& VOLTAGE
STABILIZER is also available for supplies
 output of 50 Hz or 60 Hz at 115 volts or 230
volits and as a dual frequency model with a Volts and as a dual frequency mo
switchable output of 50 Hz or 6 OHz . The Stabilizer may also be used as a frequency,
converter. For example, the supply to it can be converter. For example, the supply to it can be
any frequency between $45-65 \mathrm{~Hz}$ and the

The Stabilizer may also be used as a frequency converter. For example, the supply to it can be any frequency between $45-65 \mathrm{~Hz}$ and the output can be switched to either 50 Hz or 60 Hz .	operates from a heavy duty 24 volt battery and has output ratings similar to the A.C. models. This type of Stabilizer is particularly suitable for mobile operation.
Deta	Available Post Coupon

 WW-089 FOR FURTHER DETAILS

ww-079 FOR FURTHER DETALLS

ELECTRONICS, 6 WOLSEY ROAD, ASHFORD, MIDDX. ASHFORD 53661

 ws. W - 011 FOR FURTHER DETALIS

(\cap Q
At last, DIY Hifi which lauks us if it isn't.

\qquad

The PU Darchester-LU,IIU,5U,\& FII sterea tuner

WW $=012$ FOR FU

II 9900 MICROPROCESSOR COURSES
 Contributions to the fees for Bleasdale courses are available from the Department of Industry Fundamentals of the 9900 This one week course covers This one week course co he basic principles of microcomputers and operation of the 9900 - how to Use microcomputers and the Texas Development Systems. Designing Systems with -using spenwo week workshop designed -using specially designed hardware to configure systems
 building on leaving the course. instruction covers in detail . software to control the systems hat have been biut sotware that have ben built. For more details conta Bleasdale Computer Systems Ltd 7Church Path, Merton Park London SW19. Tei $01-5408611$

Sound \& Communications systems
Please send me details
Please send me details
\square Sound reinforcement/
public address equipment
\square Theatre sound equipment
\square Hospital distribution
and nurse call systems
\square Intercom systems,
commercial \& industrial
\square Hotel entertainment systems
$\square \quad$ Simultaneous interpretation

Name

Address
(Migh tolerance on insert procedure For full details contact:

WW-O69 FOR FURTHER DETALLS

QUALITY COMPONENTS BY RETURN

C. N. STEVENSON (W1) 236 High Street, Bromley, Kent BR1 1PQ. Tel: 01-464 2951/5770

WATFORD ELECTRONICS

33 CARDIFF ROAD. WATFORD, HERTS, ENGLAND

DM 900

THERE ARE 900 REASONS FOR BUYING THIS MULTIMETER (with direct reading capacitance range)
Its 900 cubic centimetres are packed with up to the minute technology offering a low cost yet accurate capacitance too, on a total of 30 RANGES. The WATFORD ELECTRONICS DM900 uses latest MOS Integrated Circuits which drive a $31 / 2$ digit Liquid Crystal Display for extremely low power consumption
Specifications:
DC VOTS 5 ranges 200 mV to 1 KV Z Zin
AC VOLTS 5 ranges 200 V .
 - ACCCRRENT 5 ranges $200 \mu \mathrm{~A}$

- RESISTANCE 6 ranges 200Ω
to 20MA
to
- DIODE Voltage Drop 100na
- to $\operatorname{CA} 10 \mathrm{~mA} A$ A
- Accuracy on all ranges better

- Single 9V (PP3) Po
- Sampling Rate
- Isolated Floating Ground - Dual Slope A/D Conversion

- Display Test Facility
- Overall size: $160 \times 95 \times$

Battery Test Facility \quad Colour: Grey (standard)
Black Orange (optional)
The DM900 incorporates dual slope A/D conversion; true auto zero; polarity and overrange indication; battery and display test facilities. Hs inpur in high impedance circuits without distorting circuit operation. The DM900 is small and robust. It measures only $160 \times$ $95 \times 60 \mathrm{~mm}$ and is housed in an ABS case which will fit in your coat pocket or briefcase.
The DM900 has been specially designed for Watford Electronics and is available in kit form or ready built. Special Offer: $£ 78.50$ plus VAT ($p \& p$ insured add 80 p) Also available in Kit form for the Enthusiast at $£ 54.50$ plus VAT plus 80 p (probes and carrying case $£ 3.00$ extra).

The Amcron RTA2 Real Time Analyser is designed as much for use as a production toor as it is for on-site audio analysis of theares, and
$\star 5^{\circ}$ CRT Display
\star Internal Pink Noise Source
$\star 1 / 3$ or 1 octave Display
\star
\star
\star
\star Foutequency ry renge $20-20 \mathrm{kHz}$
¿ Compatible with any microphone
\star Price $\mathrm{E} 1,960$ ex. VAT

POWER AMPLIFIER D75

The AMCRON D75 power amplifier replaces the previous model D60. Employing completely new type circuitry it ofters also many
\star New Amcron IOC comparator
¿ Balanced XLR input coanectoo
\star Signal Presence indicators.

\star Separate Signal chassis earth.
$\star 45$ watts
into 8 ohims per channe

$\star 45$ watts into 8 ohn
\star
Price $£ 230$ ex. VAT

Other AMCRON products include:
DC300A amplifier 500 watts/chàn.
D150A amplifier 200 watts/ chan.

IMA Intermodulation Distortion Analyser unit

MACINNES LABORATORIES LTD. Carlton Park Industrial Estate
Saxneundham, Suffolk Saxnpundham, Suffolk, IP 17 2NL
Tel. Saxmundham (0728) 2262/2615

Cassettecopiers
fromPENTAGON
Simple operation-fully automatic 16 times speed. Choice of one or three copies. C32/34outproduces all other makes - 75 C60 per hour outproduces all other makes -

WW - 046 FOR FURTHER DETALS

RECHARGEABLE BATTERIES

trade enquiries welcome
Full range available to replace 1.5 volt dry cells and 9 volt PP type
batteries. SAE for lists and prices. $£ 1.00$ for booklet, "Nickel
Cadium Power.,
Full range available to replace 1.5 volt dry cells and 9 volt PP type
batteries. SAE for lists and prices. $£ 1.00$ for booklet, ". Nicke
Cadium Power." Write or call a SANDWELL PLANT LTD
2 Union Drive, Boldmere
2 Union Drive, Boldmere
Sutton Coldfield, West Midands 021-354 9764 Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, London
WC2.

W 24 FOR FURTHER DETAIIS
 WW-090 FOR FURTHER DETAILS

fact:
 you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use.
Like musical instruments, each different type of Shure microphone has a distinctive sound, or physical characteristic that optimizes it for
Take, for example, the Shure SM58 and SM59 microphones:

wireless world

The death delivery business

WITH ADMIRABLE candour the editor of Jane's Weapon Systems reminds us what the real purpose of
military equipment is. In the foreword to the latest edition of the book he says: "Since death is one of the design criteria of much of the hardware that is the subject matter of this book, it
would be coy to the point of dish to eschew the use of the word." If one did not know already, this
thousand-page, four kilogram, £27.50 glossy catalogue of aberrant ingenuity would be a most effective criterion has come to depend more and more on electronics. We are in the business of the delivery of death. There is no need to elaborate on the used, for many of our readers know about them intimately. They design and make them. In Britain alone over half a million people get their living from military manufacturing and, of thes
several tens of thousands are producing the electronic equipm Over the past few years military electronics business has been growing at the rate of about 30 per cent per
annum, and there have been reat annum, and there have been great Ferranti, GEC-Marconi, Plessey, Racal and the many others dependent on them. Thanatos rules OK . To judge from their public announcements, the managements of any misgivings about this side of their activities - though they can sometimes be coy about revealing exactly who the customers are. They must be delighted by the latest "scenario" by the military Projection Founded on Today's Facts (Hamlyn). And the engineers, technicians and production people all seem happy in their work, for the death delivery business provides a good intellectual challenge for others. For the continuing obsolescence of the

lectronic systems is guaranteed by the

 arms raceIt must be that all these honest citizens are not reailly aware of what they are doing. Most of us, especially experience of seeing human beings torn into mutilated corpses by high explosives. Those of us who are not tupid or callous simply avert our eye mentally. Or we employ the well established human trick of rationalizing and justifying what are basically irrational and unjustifiable by appeal to the abstractions and dogmas of politics, economics, patriotism or even religion. Or we are Captain Ahab: "All my means are sane: my motives and object mad."
But apart from the attitudes individuals, ranging from indifference to fanaticism, what keeps this deadly trade going is an almost organic intercourse between the electronics
firms and the military. A corruption firms and the military. A corruption
case in 1978 gave point to it. The UK's Electronic Engineering Association, for example, might as well be a department of the War Office (now evasively called the Ministry of Defence). In his television series The
Age of Uncertainty J. K. Galbraith described it in these words: "The military forces in each country exist in a symbiotic relationship with those who develop and manufacture the
arms. Each lives off the other, each contributes to the other's growth, and the United States is then locked into a symbiotic relationship with the Sovie Union, and vice versa. In this relationship, each country, by the
weapons it invents and acquires, provides the need for the other power to do likewise, and more. Each works with the other to ensure that the competition is self-perpetuating. No
faith sustains this competition It is trap, and mankind is its victim." And we in electronics are perfectin the trap

Low-cost satellite receiving techniques

Direct television reception from satellites depends on low-cost reception equipment

by Pat Hawke

Idirect television broadcasting from atellites if to be a reality, domestic with reasonable cost and ease of installation in mind. The signal power at he aerial would be rather less than was of noise and aerial gain. A design put forward by NHK in Japan is discussed.

FOR ANY NEW SYSTEM of broadcasing to succeed, it is a basic requireme hat high-cost elements should be condistributed among millions of receivin installations. For direct broadcasting rom satellites to succeed, the picture in he home must be of good quality, and errestrial broadcasting reception, in luding receiver and aerial costs and istallation and maintenance charges. Set-makers have in the past coped ffectively with the repeated demand by he frequency spectrum planners to us Radio broadcasting began around MHz and soon involved 'Empire' services between $6-16 \mathrm{MHz}$. Early high definition television called for 40 MHz reception, the coming of Independent elevision in the region of 200 MHz , and he 625 -line UK colour services have aised the limit to $470-850 \mathrm{MHz}$. Ye never before has a single increase span troduction of 12 GHz satellite television. Furthermore, the World Agreemen has placed an unexpectedly severe limit on permissible power flux. At -103 had been widely expected, and ver much lower than the early visionarie had assumed.
Indeed, the 'down-link' (satelliteearth) is significantly more demandin installations than is the 'up-link (earth-satellite) where cost is of far less mportance.
The limiting factors in satellite recep tion are the aerial gain and thermal receiver. Both the net gain of an aeria nd the noise temperature of the system unall
Based on a paper published in IBA Technica
the input to the receiver. It must be appreciated that the aerial receives un wanted noise energy from the sky and that this increases rapidly at low angles of elevation. Ideally, the first stages of receiver should have not only a low noise temperature (often defined in gain to reduce to an insignificant value the noise contributions of suc ceeding stages.
For the receiver designer,
significant advantage of space broad casting would be the relative uniformity of signal strength; generally there would be much less variation than is common with terrestrial v.h.f./u.h.f were transmitted from space the dynamic range of the receiver could be relatively small. There would also be

G/T requirements

The performance of a satellite receiving installation is often specified by the gain-to-noise temperature ratio (G / T) of the receiver. Since T is a function elevation angle of the aerial and G is a function of the frequency, both should be specified or clearly understood when considering a G/T figure-of-merit. The figure-of-merit may clearly be held to be noise temperature by increasing the gain of the aerial; or, for a lower gain aerial, by reducing the system noise temperature
It may be noted that the origina nosting in the region of $£ 1$-million or more required the following perfor mance

$$
G / T \geqslant 40.7+20 \log _{10} f / 4
$$

$G \geqslant 57+20 \log _{10} f / 4$

In the 4 GHz band this implied that with an aerial net gain of 57.7 dB (which could be achieved with a parabolic aerial of 85 ft diameter) the earth station oise temperature of the receiver would $20^{\circ} \mathrm{K}$ might be contributed by a cooled parametric amplifier and up to $30^{\circ} \mathrm{K}$ by the aerial at the working elevation. It will be appreciated that such perfor mance was close to the 'state-of-the-art

ratio ofangle to Aerial beamwiot -
Fig. 1. The CCIR template showing the reference patterns for minimum direc-
tivity characteristics of domestic community receiving aerials for satellite broadcasting. Maximum discrimination against the cross-polar component is require an aerial gain of the beam where an aerial gain of some 33dB is
specified
of about 100 ft diameter were commonly used. For rebroadcast and distribution systems, a G/T ratio
$15-20 \mathrm{~dB}$ may be needed.
12 GHz aerials
Such high G/T ratios are unnecessary for domestic and/or community reception. For the $11.7-12.5 \mathrm{GHz}$ band with a
power flux of $-103 \mathrm{dBW} / \mathrm{m}^{2} \mathrm{a} \mathrm{G} / \mathrm{T}$ of $6 \mathrm{~dB} / \mathrm{K}^{-1}$ will provide satisfactory colour television pictures the service area.
parabolic reflector of slightly less than 1 m diameter would be required with a receiver noise factor of about 8 dB .
Within the United Kingdom arrival Within the United Kingdom arrival
angles of a signal from a satellite positioned at $31^{\circ} \mathrm{W}$ would vary from about 27° in the south-west of England to about 17° in the Shetland Islands.
The effective gain of a parabolic aerial depends upon the profile accu-
racy of the paraboloid; in practice, it is racy of the paraboloid; in practice, it is
usually accepted that there can be departures of up to one-tenth wavelength without significant deterioration of gain and directivity. However, at 12 GHz
a wavelength is only 0.025 m ; so the a wavelength is only 0.025 m ; so, the
profile tolerance is preferably of the order of $\pm 0.0025 \mathrm{~m}$ or better from true paraboloid - a figure demanding care in construction and installation, and protection of the surface skin against
deformation and pitting during its useful life.

The receiving aerial also needs to be The receiving aerial also needs to be accuracy better than 0.5°. When the figure is related to an average domestic u.h.f. aerial it will be appreciated that installations will require a high degree
of care. Fortunately, however, provided that a means of adjustment is provided it should prove possible to line-up an aerial by observing the picture, rather than by dead reckoning. The waveguide feed for a small parabolic aerial is com
plicated by the decision to use circula polarisation. However it will not be necessary to seek 'height-gain' fo satellite receiving aerials; typically, an with a fairly simple provision for fin adjustment.
With an elevation of 24° in the Lon don area, it should not be difficult to achieve a clear 'line-of-sight' toward the distant satellite; though lowe
apartments in any heavily built-up area might in a few cases present problems The surface of a metallised parabolic aerial in an urban or coastal environ ment will almost certainly require pro tection, but it has been suggested that, enclosed in polythene sheeting which could be renewed when necessary. No matter how effectively the receiving aerial may have been de
signed, or how carefully it may have been packed and transported, the long term performance will depend on the care with which it is installed. The construction and mounting must be wind and weather including any pos sible warping or structural changes throughout the estimated operationa life.

The 'view' of the satellite must be places in the UK where the ne fural topography is likely to cause screening this may be a serious problem among large buildings or tall trees. Even where the power flux density is sufficient to permit the use of individual aerials,
there will clearly be advantages in pro viding community systems, each with one master aerial and with associated front-end serving a number of installations. Distribution could be at the video u.h.f./a.m. or $1.2 \mathrm{GHz} /$ f.m., etc. A pos sible source of interference is harmonic radiation from domestic microwave ovens.
The
e economics of the mass-market make it essential that the manufacture of any consumer aerial should be easy designed forward. Aerials shour and reasonably priced. They should be suitable for assembly, erection and the order of $30-60$ minutes offer low resistance to winds and perform with out excessive degradation in the pre sence of snow or ice. It is likely that the ($0.6-1 \mathrm{~m}$ diameter) of effective perform-

Fig.2. There is a number of basic receiver configurations which could be adapted to interconnect a 12 GHz f.m. u.h.f. I a.m. receiver. An adaptor providing a u.h.f. / a.m. output could be nected directly to the aerial socket of an existing receiver. Alternatively, an out-
put at the i.f. of the main receiver could feed into the i.f. amplifier section. Output at video frequency would be attrac-
tive in reducing spurious signals but would require the provision of an 'isolated' socket, possibly using an optical coupling arrangement.

Fig. 3. The development of multi-mode television receivers, capable of accepting an f.m. signal between, say, 0.9 1.3 GHz would provide one of the more attractive configurations.
satellite receivers.

ance at 12 GHz would be several times that of a conventional service-area u.h.f. receiving aerial. Also, of the two, he paraboloid m more rapidly.
periments, a 60 cm man 'Hermes' ex-NHK-NEC receiver achieved good results inside a building, "seeing" the
satellite from behind a double-plated window. The windows attenuated the signal by about 2 dB . An "attic" experiment was unsuccessful.
12 GHz front-ends
The development (for other applicatechniques which appear to lend them-
selves reasonably well to quantity pro duction techniques, makes it possible to eneration with some confidence the most daunting requirement is ow-cost reasonably stable and spe rally pure microwave 'source' to prohe the local oscillator. Fortunately, in Gunn discos, the British scientist J.B. an be caused to that certain diodes stability of these can be improved with high-Q cavity. More recently, progres has been made in the development of microwave transistors, such as the gal ium arsenide (GaAs) field-effect de vices
For a 12 GHz 'front-end' adaptor the power output of the local oscillato unless automatic frewuency correctio is employed, the frequency must be table within about $\pm 0.1 \mathrm{MHz}$
The UK has been assigned channels 4 $8,12,16$ and 20 , so a tunable converte would need to cover a tuning range of some 400 MHz . However, it is likely tha in microwave oscilator would be fixed be achieved by varying the first inter mediate frequency with a.f.c. applied to the second oscillator. It has been sug gested that the first i.f. for a 12 GHz satelite receiver would be in the region MHz . Both these frequencies are close o amateur service allocations (with high local field strengths in residentia areas). Gunn diodes could be manufac ured economically in large quantities, would seem feasible. An alternative approach would be to use a crystal controlled chain, or, rather more pro frequencies acoustic wave oscillator. If the cost of varactor diode multipliers, ste recovery diodes and microwave GaA field-effect-transistors fall, it may be stable microwave sources within the cost-range of consumer equipment Until recently the possibility of viding an effective $12 \mathrm{GH} \angle$ low-noise signal amplifier at acceptable consumer prices would have seemed remote, and on feeding the signal directly to a diode
mixer，with the object of achieving an continuing advance in bipolar and field－effect microwave transistors no longer rules out the possibility no signal frequency amplifier，reducing the signal frequency amplifier，reducings．
noise figure to perhaps $4-6 \mathrm{~dB}$ or less．It is notable that，in less than a decade， estimates of 12 GHz noise figures have dropped from about 12 dB to about 7 dB ．
The constructional technique based on The constructional technique based on able simple cut－outs，etc．，would appear
to present few problems to mass pro－ duction．Such approaches would enable verters whichoouction of 12 GHz con to the aerial feed waveguide；such methods would appear to make possible a G／T figure－of－merit better than 7dB， with sufficient＇image rejection etc． and would leave a small margin for deterioration
stallation．
The power levels of satellite trans mission currently make frequency
modulation a virtual necessity；the satellite adaptor would need to provide an output either at video frequency or as an amplitude－modulated u．h．f．signal，
or be incorporated in a complete multi－ mode receiver．In practice it seems more likely that a special a．m．／f．m．television receiver would be developed which would accept a．m．signals at Bands IV
and V（and possible Bands I and III）and and f （and possible Bands I and III）and $\frac{\text { f．m．signals from the } 12 \mathrm{GHz} \text { converter }}{\text { over the range } 0.9-1.3 \mathrm{GHz} \text { ．Many con－}}$ figurations for domestic or small－

Fig．4．Block outline of the experimental NHK 12 GHz satellite front－end deve－ cost approach．The 12 GHz converter， using a Schottky diode mixer and Gunn diode oscillator，has a planar circuit mounted in a short section of fabricated by pressing or etching，and with no precision machine processing．A very simple form of f．m．／a．m．conver sion provides an output at v．h．f．

Fig．5．Details of the 12 GHz converter with planar circuit developed by NHK for an experimental low－cost satellite receiver．In essence it is a metal sheet with patterns punched－out to form
circuit elements．A laboratory unit has a claimed noise figure of 4.5 dB and con－ version loss of 3.4 dB ．

Fig．6．Circuit diagram of the simple orm f．m．I a．m．converter used in the This provides a v．h．f．／a．m．output suit able for use with a conventional televi－ sion receiver．

Fig．7．Block outline of the satellite receiver developed by Mullard Research Laboratories（now Philips Research Laboratories）and demonstrated in Canada，receiving 525 －line NTSC trans－ missions from the Hermes satellite．This uses a Schottky－diode balanced mixer in the microstrip form followed by a
40dB u．h．f．amplifier．In the second unit the signal is demodulated and then remodulated to provide a u．h．f．／a．m output．Au automatic frequency control
loop in the second unit can function over a band of $\pm 5 \mathrm{MHz}$ to compensate for frequency variation in the Gunn for frequency variation
diode s．h．f．local oscillator．

IRELESS WORLD．JANUARY 1979 possible．

NHK 12 GHz f．m．receiver

One of the most interesting designs for a 2 GHz f．m．receiver yet to appear stem from the NHK Technical Research Laboratories in Japan．This provides using circuits and constructional tech niques which make it attractive fo quantity production at low cost．Fig． 4 hows the block diagram．The 12 GHz a short section af war circuit mounted circuit elements made by pressing or tching，so eliminating the need fo precision machine processing．It is laimed to result in a down－converter ilter a Q value several times that of rated circuit．The metal sheet can be of he order of 0.3 to 0.5 mm in thickness． he Schottky mixer diode serves as the mpedence matching between high medence waveguide and the diod ircuit A Gunn diode is used as the local The receiver also incorporates a low cost f．m．／a．m．converter to allow the 43 MHz output to be fed directly to th aerial socket of a u．h．f．a．m．receive
without any video and sound amplifier and modulator．In effect，this f．m．／a．m． converter uses the non－linear charac eristic of the mixer diode to produce mplitude variation of the output sign inpoportional
A laboratory unit has a noise figure of 4.5 dB ，conversion loss of 3.4 dB ，band width of 100 MHz ，differential gain 5 per ent or below，and diferential phase ow noise figure without an s．h．f． amplifier is remarkable．
A receiver developed by NEC from the original NHK design was shown in laims were met during the Canadian experiments．

MRL satellite receiver

A design developed at the Mullard Research Laboratories（now known unction with Philips，Eindhoven adapted for $525-$ line NTSC system，wa one of a number of models demon strated with the CTS＇Hermes＇satellit tests during 1976．These receivers used coated，glass－reinforced，polyester plas tic construction．As with the NHK receiver，they have been designed for linearly polarised signals and would mode－transducer in order to operate with circular polarisation．
Figure 7 shows the basic arrangement of the MRL converter．To frequency change from 12 GHz to 410 MHz a aerial，uses a Schottky－diode balanced

$$
\begin{aligned}
& \text { IF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 需敞 }
\end{aligned}
$$

Table showing correspondence between channel numbers and assigned frequencie for the 12 CHz satellite broadcasting band．

$\begin{gathered} \text { Channel } \\ \text { No. } \end{gathered}$	Assigned Frequency	Channel No．	Assigned （Mhz）
	11717.48		12111.08
	11746.66	22	12130.26
3	11765.84	23	12149.44
4	11785.02	24	12168.62
5	11804.20	25	12187.80
6	11823.38	26	12206.98
7	11842.56	27	12226.16
8	11861.74	28	12245.34
9	11880.92	29	12264.52
10	11900.10	30	12283.70
11	11919.28	31	12302.88
12	11938.46	32	12322.06
13	11957.64	33	12341.24
14	11976.82	34	12360.42
15	11996.00	35	12379.60
16	12015.18	36	12398.78
17	12034.36	37	12417.96
18	12053.54	38	12437.14
19	12072.72	39	12456.32
20	12091.90	40	12475.50

Note：UK channels are $4,8,12,16 \& 2$
$31^{\circ} \mathrm{W}$ ，polarisation left hand circular．

the frequency band $11.7-12.5 \mathrm{G} \mathrm{Hz}$	
Type of modulation	25
Number of lines	625
Sound sub－carrier frequency	6 MHz
Peak－peak deviation	3．3MHz
Peak deviation of sound sub－carrier	0kH
Receiver equivalent rectangular noise bandwith	27 MHz
Angle of elevation	15． 40°
Luminance signal－unweighted noise	34 dB 33dB
Sound sig	51 dB

Fig 8．（a）Basic arrangement of conven－ tional diode mixer．（b）The anti－parallel form of the harmonic mixer．c Basic form of the harmonic mixer．Cohn et al have all shown that harmonic mixing not only reduces the frequency of an the effect of oscillator noise side－bands and provides inherent self－protection against diode burn－out．However careful selection of diode pairs is needed soon loss can be comparable to that achieved with similar diodes with fun－ roposed broadcast sote． 12 param Yype of mod
Number of of
ines
eak－peak deviation Receiver equivalent
Anose bandvith
Angle of elevation
 Sound signal weighted dioise ratio 51 dB
for 99% or worst month

damental mixing．

mixer in microstrip form，followed by a Gunn－diode amplifier．An 11.7 GHz Gunn－diode local oscillator provides
about 10 mW output．It is stabilised by an aluminium cavity，integral with the converter，and with dielectric tempera－ ture compensation to keep the output accurate to within $\pm 5 \mathrm{MHz}$ ．This is
within the range of the automatic frequency control system applied to the second local oscillator in the main unit located alongside the standard receiver This second unit has an i．f．of 120 MHz and is demodulated to the video
baseband before remodulation with a．m．，together with the associated sound channel．The noise figure is about 7 dB ，and，when used with a 1.6 m parabolic aerial（43dB gain），can provid good reception from a received signal o bandwidth of 36 MHz ．The tests under－ lined the practical importance of the additional signal attenuation which results from heavy rain． pecially suitable for small community alta for small community

Harmonic mixing

The problems presented by a simple diode mixer include the unavoidable
conversion loss，local oscillator radia－ tion and＇image＇reception．While these problems can be reduced by carefu choice of diode，by the use of a double balanced configuration and by choice of selves readily to low－cost consumer equipment．An arrangement which might offer attractions for this application is harmonic mixing with anti－paralle diode pair．
tage of a lower frequency＇source＇with consequent easing of stability problems． However，in most arrangements it results in conversion loss 3 －5dB greater anti－parallel diode configuration reduces conversion loss by suppressin the fundamental mixing products and results in a lower noise figure by reason noise suppression it acal oscillato direct video detection and provides in F
 m 1 － － 8 A 8
 ． ．

 use of either filters or baldepend on the using hybrid junctions. However careful selection of matched diode pairs is necessary to obtain the full advantages. Experimental harmonic mixers, reported by Cohn, Degenford and Newman have used a pair of GaAs Schottky
barrier diodes shunt-mounted across a slot line. In one experiment an existing microstrip mixer was modified to accommodate a series-mounted antiparallel diode pair to evaluate second7 GHz local oscillator. An 8dB total conversion loss was comparable with that achieved when using fundamental mixing at 12 GHz , although no attempt. impedance matching.
It has yet to be determined whether harmonic mixing with anti-parallel diode pairs would be suitable for lowcost microwave receivers.

Receive filters

Since a low-cost satellite receiver will require to operate with physically small aerials and relatively unsophisticated the best possible use of the available signal power. In any receiving system, the effective noise performance can be improved by restricting the predetection bandwidth. This is normally
done by matching the bandwidth of the intermediate-frequency amplifier to the signal bandwidth, using i.f. 'filters' such as the familiar single or double-tuned i.f. transformer or, its modern equivalent, the surface-acoustic-wave filter.
no simple definition of the bandwidth, since, theoretically, the sidebands extend to infinity. Thus, any bandwidth restriction involves some loss of
higher-order sidebands, and so intro-higher-order sidebands, and so introThe practical effects of such nonlinearity are more noticeable in systems employing a sub-carrier for the transmission of the sound channel. ${ }^{2}$
width reductions may be expected to improve the received carrier-to-noise ratio in a satellite receiver, if the spec-
trum of the modulated carrier is resttrum of the modulated carrier is restricted unduly, truncation gives rise to
signal distortion. The first subjective indication of this is usually buzz on sound, although a visible beat pattern between sound and chrominance subcarriers is also possible.
It has been suggested that, for the
proposed UK standard of deviation, the -3 dB bandwidth of the i.f. filter should be 27 MHz , though clearly there might be a temptation for set-makers to consider reducing bandwidth a little below
this figure, at a risk of buzz on sound and truncation 'noise' or differential phase and amplitude distortion.
signals was reported from Sheffield and Dublin ${ }^{3}$ despite the effective radiated power being at least 30 dB below that of
the primary lobe. The free-space atte nuation of the signals, with a vertical arrival angle of about 22° was of the order of 183 dB and the field strength of the order of $3.3 \mu \mathrm{~V} / \mathrm{m}$. Receiving aeria gains well in excess of 20 dB were desir able (a 5 ft dish at Sheffield had an
estimated gain of 19dB) and low-noise estimated gain of 19 dB) a.
Significant variations of signa
strength were real Strength were recorded by the station a to local weather conditions, but also possibly due to variations of transmitte power. Satellite transmitter power was 80 W with 5 IdBW effective isotropic radiated area (about 2ldBW towards the UK).

Economic considerations

Economic considerations the home or for community distributio or as feeds for low-power broadcasting ransmitters and transposers thus offer no insurmountable problems. It is owever, impossible to predict with an more a combined v.h.f./u.h.f./s.h.f a.m./f.m. television receiver would cost the viewer, or. for example, what would be the further cost if one of the five UK
12 GHz channels were to be used for a 12 GHz channels were to be used for grammes. It is reasonable to suppose that, at 1977 values, the additional costs would not be less than $£ 100$ and migh be as high as $£ 250$.
amount to little more than unfortunately-placed viewers might currently be prepared to pay for an elaborate aerial for a conventionalu.h. receiver if there were no other way the However, this possible scale of charges would appear differently to a viewer already receiving four u.h.f elevision programme channels and channels.
It is this financial factor, more than any other, that still casts a doubt on th mplementation within the next decad of satellite broadcasting in the UK.

References

1. 'Harmonic mixing with an anti-paralle diode pair' Marvin Cohn, James E Degenfor
and Burton A Newman, IEFE Trans Microwave Theory and Techniques, Vol MTT-23, No 8, August 1975 (see also Automation and Remote Control (USSR) Vol
19, April 1958, pp. 355 et seq.; IRE Trans on 19, April 1958, pp. 355 et seq... IRE Trans on
Instrumentation, Vol 1 , No. . December
1960, pp.349/355 IEEE Trans MTT, March Instrumentation, Vol 19, No. 3, D
1960, pp.349/355 IEEE Trans MTT,
1975; IEEE Trans MTT, May 1976).
2. A N Kent, 'Bandwidth optimisation in a direct satellite television broadcasting sys.
tem'. IEE Conference Publication No 119. 3. Television from India, Wireless World
March 1976 pages $68-70$.

A low-cost digital frequency meter

Frequency measurement to 200 MHz with 1 kHz resolution

This article describes a low-cost 200 MHz digital frequency meter having 1 kHz . The unit, which is designed fo 'hands-off' operation and requires only power and signal inputs, is suitable for addition to existing equipment or may its own right. The entire circuit is assembled on a single printed circuit board, as shown on the front cover.
THE authors' aims were to construct a frequency meter which would operate up to 200 MHz with a 1 kHz resolution, have a high sensitivity (less than 100 mV) and be easy to operate with a had to use readily available components, operate from a single, unregulated power supply and be assembled on a single, compact printed-circuit board minimum number of devices, the auth ors used a four-stage counter, a latch, a display driver i.c. and, although it was a t.t.l. design, a mixture of t.t.l., c.m.o.s.
and e.c.l. devices. The design philosophy was that of employing the best type of device for each particular circuit application, bearing in mind such factors as speed of operation, power con sumption, ease of interfacing, and cost.

Principles of operation

The block diagram of the frequency signal is first amplified using a high gain wideband amplifier, and then applied to a fast divide-by-four bistable arrangement. Since the input amplifier nd pre-scaler both use e.c.l. devices, it is necessary to incorporate a level
translator in order to interface correctly with the next stage, which is a high speed Schottky t.t.l. signal gate. The divided-down input signal is gated with a clock signal at 250 Hz derived from a divider chain. Repetitive sampling is provided by means of a conventiona astable oscillator using a timer i.c. A control logic arrangement is used to
produce rest, transfar and latch enable signals.
The output of the signal gate is passed to high-speed t.t.l. decade counter and conventional c.m.o.s. decoder/latch and seven-segment 1.e.d. display. The output
of the first decade divider is then fed to a four-stage t.t.l. decade counter, decoder four-stage t.t.I. decade coul i.r. package This i.c's output is used to drive four further seven-segment l.e.d. displays directly, and these are strobed in sequence by means of a clock and logic
incorporated in the i.c. The final "half" digit is obtained by means of a bistable latching arrangement which operates on the carry output of the main divider. The last seven-segment indica 'tor is when enabled by a 'carry' output

Input amplifier and prescaler
The amplifier and prescaler section of the counter comprises three distinc stages; the input amplifier, the prescale and the level translator. The first stag

Fig. 2. Input amplifier and prescaler.
determines the overall counter sen sitivity, the second stage limits the allows the hybrid operation which results from the aims of the design. (See
Refs. $1 \& 2$). The circuit diagram is shown in Fig. 2.
All signal interconnections in this nit are terminated by low-valued re istive loads. These resistors are necessary to provide matching and the signal lines; this can quite easily be up to 100% of the signal amplitude and can, even at quite modest frequencies, eriously affect the performance of the act values of load resistors require to minimize the ringing on the signa ines. This is normally only found to be necessary when the absolute maximum nerformance is deemed essential. in clude the physical dimensions of the ines themselves, the track layout, the p.c.b. material and the stray reactances practice, however, he resistor values provide a good compromise and are appropriate for the short interconnections used in the construction of circuits of this type. They have also given simiprototype circuit layouts. If desired, for the best possible performance, the terminating loads may be optimized individually using a signal source and oscilloscope, suitable examples of which are mon this the perfuch measures will be beyond the needs and/or the resources of many constructors and may, in any case, yield little or no improvement in circuit perormance.
An MC in the e.c.l. triple-line receiver wideband amplifiers in the device are cascaded in a broad-band limiting amplifier configuration, with differenmatched to 50 ohms and the offset val tage developed across R_{2} acts to prevent
equer being over-sensitive at low noise may be a problem.
The prescaler uses an. dual high speed D-type flip-flop con stages to provide a prescaling factor of four. The output from the second stage of IC_{2} is a signal of approximately 800 m peak-peak with an associated compatible by the action of Tr_{1}
For reliable operation the e.c.l. stages require a minimum supply voltage of approximately +5.1 V . However, performance measurements indicate that a supply of approximately +5.6 V . This value is a trade-off between increasing count rate and decreasing sensitivity with respect to supply voltage.

Time standard oscillator

and dividers

A six-digit frequency counter incorporating a divide-by-four prescaler and conventionally requires a signal 1 kHz pling window of 4 ms . To provide such a signal directly, to the required accuracy and stability, is impractical in this type of application. An alternative approach, using a higher frequency fore been adopted. The circuit diagram is shown in Fig. 3.
A 1 MHz crystal oscillator is used as a reference and the 250 Hz signal required by the gate control logic is produced by or and divider circuits are comprised exclusively of c.m.o.s. logic in order to mprove stability, guarantee sta-
 reduce package count in comparison or a reduced component cost (see Refs.

The oscillator circuit uses a single verter, $\mathrm{IC}_{3 \mathrm{~d}}$, in a conventional feedosck arrangement. The frequency of he fine frequency adjustment is provided by TC_{1}. R_{14} completes the d.c. path around the loop, while maintaining high Q .
The output of the oscillator is buffinput of a 14 -stage ripple counter, IC which is arranged, by using IC_{5} to decode a count of 8000 and generate a eset pulse, to divide by 4000 . The sace ratio of approximately $1: 1$ and a p.r.f. of 250 Hz .

Control logic and signal gate

t is the control logic and signal gate which bring together the otherwis frequency meter. The control logic sets the sampling rate of the instrument and performs all of the necessary housekeeping functions, ensuring, for all reset to zero before the input signal is

Fig. 5. Control logic and signal gate ming diagram
re-sampled. The signal gate, by com mands from the control logic, provide the counting/display circuits with the to the display resolution ane appropriate signal frequency being sampled

Components

circuit diagram for the control logic and signal gate is shown in Fig. 4, and a
timing diagram is given in Fig 5, timing diagram is given in Fig. 5 . arranged as a control astable with a low period of 10 ms and a high period of approximately 700 ms . The signal sampling sequence is initiated by a
negative transition of the control ast able. This transition causes the next positive edge of the 250 Hz clock to invert the output states of $\mathrm{IC}_{7 \mathrm{a}}$, driving the Q output high and enabling the a Schottky t.t.l. device ${ }^{8}$, which allows gating to be possible at speeds well above the nominal 50 MHz required by this design. The next positive clock transition reverses the change of state at the outputs of $\mathrm{IC}_{7 \mathrm{a}}$, inhibiting the
signal gate. This change, in turn, drives the Q output of IC_{7} high, enabling the display latches and inhibiting $\mathrm{IC}_{7 \mathrm{a}}$ until the start of the next sampling period. The positive transition of the contro astable completes the display latching $\mathrm{R}_{18} / \mathrm{C}_{6}$, clears the display counters ready for the next sampling period. The whole circuit then waits for the next negative astable transition, when the
whole sequence is repeated. The sampling rate is set by the combination of $\mathrm{R}_{15}, \mathrm{R}_{16}$ and $\mathrm{C}_{5}: \mathrm{R}_{15}$ has been chosen to give a sampling rate which is long enough to allow the display to be easily read, yet short enough to allow frequency without the display delay becoming tedious. The sampling rate may be increased or decreased by reducing (down to a limit of $25 \mathrm{k} \Omega$) or
increasing, respectively, the value of ${ }_{R_{15}}$ Alternatively, R_{15} could be replaced by a combination of a fixed and a variable resistor.

Counters and displa

The overall functions of the counters pulses from the signal gate during the

Electronics implants for the deaf

ADVANCES in electronics are greatly in creasing the importance of cochlear implants
in the fight against deafness. A cochlear in the fight against deafness. A cochlear
implant enables the remaining nerves of hearing to be stimulated by electrical impulses which are heard by the deaf person
as sounds. It does not involve the replacing of a damaged organ by living tissues, as does a kidney or heart transplant, but it is the product of a combina
electronics research.
The subject of cochlear implants was pre-
sented at the RNID (Royal Institute for the sented at the RNID (Royal Institute for the
Deaf) Conference held at Brighton in SepDember, by Mr Ellis Douek, consultant
otologist to Guy's Hospital, London. Mr Douek pointed out in his conference paper that despite present developments there are
few aspects of research into hearing loss fhich are less understood. "For instance, the
we relationship between surgeon and scientist is
not one that can be developed rapidly. Their not one that can be developed rapidly. Their
training and experience has been so different training and experience has been so different
that it requires a long process of fusion
through working through working together before there is an
adequate meeting of minds ... problems of adequate meeting of minds... problems of
this kind mean that there are few places in
the world where such work has been feas-
ible." He hoped to show that a new operation that can be learnt
does not yet exist.
The advances, according to Mr Douek, are
applicable to persons who applicable to persons who are totally deaf and cannot be helped by amplification - to
those who have 'nerve deafness'. In cochlear implants the problem lies in making sounds meaningful and worth listening to, even though knowing that someone is talking to you has considerable value in its own right.
There are four centres in the world where teams are working on this problem; the other three being in Paris, Los Angeles and San
Francisco. The impla
The implant research in London is partly
unded by the Medical Research Council and is being undertaken by Ryrearch Council and A. Fourcin of University College London, Dr
B. Moore of Cambridge University and Dr S Rosen from the USA. Other Guy's Hospital members undertaking the task are Mr G. P.
Clarke, Dr L. H. Bannister and Dr H. Dodson. Clarke, Dr L. Hu' Bannister and Dr H. Dodso
So far at Guy's the team have succeeded, by implanting an electrode onto the innere ear
of a number of patients, in obtaining results of a number of patients, in obtaining results
as good as those of teams abroad, using a as good as those of teams abroad, using a
much simpler and safer technique. They have
also managed to process the sound of speech to allow through to the patient only what can meaningful, some not. At the present time a patient can hear only the low tones of speech and is unable to hear middle or higher tones meaning that he must also lipread in order to discriminate speech.
However, the im
observed are that the rhythm of speech is well perceived, the stressed word in a senable to distinguish between rise and fall in
speech - enabling him to tell if speech - enabling him to tell if you ar stating a fact or asking a question. The
patient can also more easily control his own
voice. The team has two hopes for the future
firstly that they may be able to control the higher tones so that they can offer what would sound like true speech, and secondly that the equipment be miniaturised an
driven by radio transmission to be totally inconspicuous and usable a distances even greater than the voice will
carry The latter is now possible because of dvances in electronics communication technology and component miniaturization.

Product liability and UK apathy
sampling period, store the result and decode it to drive the display segments.
The display resolution is determined by the gating period and the degree of prescaling, while the display length determines the maximum frequency which may be indicated. Figure 6 gives the circuit diagram for the counting and sign aim was to produce a 200 MHz counter with a display resolution of 1 kHz , a $5 / 2$-digit display structure was chosen in order to avoid the penalties of and power dissipation which result from the use of a full-range leading digit. The display unit itself makes use of low cost indicators, with the proviso that they anode and common cathode common features leading-zero suppression on the four leading digits in order to minimise power dissipation.
The count pulses produced by the signal gate are applied to a 50 MHz t.t.l.
decade counter, IC 9 and the b.c.d. counter outputs are latched by IC_{10} at the end of the sampling period. IC_{10} also performs the decoding and segment driving of the least significant digit being provided by diodes $\mathrm{D}_{1}-\mathrm{D}_{3}$.

ig. 6. Counters and display

The count sense from IC_{9} is inverted by $\mathrm{IC}_{8 \mathrm{c}}$ and then applied to a four-digit universal count/display device, IC_{1} counter, memory latches, segment coders, drivers and display strob circuits. In addition, the device has zero suppression facilities and it contributes greatly to the reduction in the package is 5 MHz and the carry output is used to produce the leading half-digit display $\mathrm{IC}_{12 \mathrm{a}}$ acts as a single-bit counter and $\mathrm{IC}_{12 \mathrm{~b}}$ serves as a single-bit display latch. The \bar{Q} output from $\mathrm{IC}_{12 \mathrm{~b}}$ is used to blanking circuits over the range 100 MHz to 109.999 MHz .

The second part of this article will de scribe the power supply for the requency meter and will give details for ponent layout details will also be given.

rence

Taylor, D. J., A 200 MHz Counter Pre
2. Firth, G. F. and Pratt, D. M., A Digit Frequency Counter and Timer, Radio Communication, March 1976, pl82. MECL System Design Handibook, Second Motorola Semiconductor Products Inc.
4. $\begin{array}{r}1972 . \\ \text { Semic } \\ \hline\end{array}$

Semiconductor Data Library: MECL i.cs,
Motorola Semiconductor Products Inc.,
W7ats, M C
5. Watts, M., C.m.o.s. Oscillators, Applica-
tion Note AN-118, National Semiconduc-
tor, 1975.
6. Calebotta, S., C.m.o.s., the ideal logic family, Application
Semiconductor, 1975 .
Taylor, D. J., Some Improvements in Digital Frequency Measurement Technique, Radio Communication, May 1972,
p288.
Schottky and Emitter Coupled Logic Schottky and Emitter Coupled

Printed circuit board

A double-sided, roller-tinned and drilled p.c.b. is available for the digita M. R. Sagin 23 Keyes NW2.

A SURVEY carried out earlier this year by the British Safety Council said that nearly
70% of the top executives in Brit ain ignorant of the product liability laws soon to be drafted into the country. In response to general of the British Safety Council, and Bowes Egan, a leading safety and consumer law analyst, have written the first European
book on the subject. The 240 -page book* is book on the subject. The 240 -page book ${ }^{*}$ is Liability' and is published by the British Safety Council.
The survey sh The esurvey showed that more than half of
he UK's firms believe the introduction the UK's firms believe the introduction
of product liability will mean Britain adop-
ting an absurd legal ting an absurd legal regime from the USA,
and that more than half of the British inand that more than half of the British in-
dustrialists are completely unaware of the strict liability issues and problems that have developed in the USA over the last twenty
years. It also showed that two-thirds Britain's firms are ignorant of the influential EEC Directive on product liability, and that as many as 71% are not conversant with the
findings of the English and Scottish Law Commissions. According to the survey more than half of Britain's manufacturing companies do not employ a quality assurance
department to carry out regular product liability audits.
In view of these findings, and the fact that UKoduct liabiily is manufacturers and suppliets, the British UK manufacturers and suppliets, the British face a more rapid, sustained and expensive
onslaught of product liability claims than The authors of the to experience. The authors of the book, speaking at a
conference in November, described how because of the differences between the product liability developments in the USA over the last 20 years are likely to occur in Britain unless UK companies are prepared to in advance for the introduction of strict in advance for the introduction of strict explained how many American companies awards or crippling insurance premiums, and claimed that the best product liability insuroducts and to set up facilities to monito

Hobby electronics exhibitions are taking

 off in EuropeAT THE TIME of writing, the Breadboar Exhibition was just starting in Londontion in England, if you don't count the radio amateur exhibitions by the RSGB and the ARRA. However, this new move is not rest-
ricted to the UK alone In Dortmund West Germany, in February ' 78 , an exhibition cess, according to the German journal Funk cess, according to the German journal Funk-
shau, and the organisers have decided to
expected to follow suit with an exhibition of expected to
their own. .
repeat it annually. A similar show was planned for September in Stuttgart. Austria also held their first exhibition of this kind in
October '78. This was entitled HobbyElektronik 78. For this occasion says Funk Elektronik 88 . For this occasion, says Funk-
shau, the Austrian magazine, ELO, held a
circuitry competition called "The electronic circuitry competition called "The electronit
unit with that something extra for 300 Aust
rian schillings" rian schillings". The Netherlands are also
peat it annually. A simil
product histories and consumer experience Bowes Egan, seemingly trying to describe
UK companies' apathy on the subject, ex plained how many industrialists claim that steep price increases for consumers, which will place British firms at a commercia
disadvantage in competitive world markets He argued, however, that their book would assist UK manufacturers, designers and importers to minimize the effects of product
liability in this country and even turn them into a commercial advantage. Importers are included in the above because it is not
necessarily the manufacturer who is liable it could equally well be the importer for he may be the one responsible for a defective product appearing in the UK market.
In summing up the value of the book In summing up the value of the book James
Tye described it as: "a detailed audit system which represents more than 350 safety steps to avoid the product liability minefiell

International copyright views aired

AT RECENT meetings of the copyright pro-
tection bodies, it was the considered opinion that a compensating royalty would be the
best way to clusive rights (e.g. authors, performers, composers and producers of phonograms and videograms) for the damage caused to
their interests by home their interests by home tape-recording--
these royalties being made on both recording equipment and on blank audio and audiovisual tapes and cassettes. This was the view expressed by the sub-committees of the
International Union for the Protectionof Literary and Artistic Works (Berne Union), the Intergovernmental Copyright Commit-
tee and the Intergovernmental Committee of tee and the Intergovernmental committee of
the Rome Convention for the Protection of

Post Office monopoly will be

broken - General Secretary, EETPU
FRANK CHAPPLE, general secretary of the
Electrical, Electronic, Telecommunications and Plumbing Union said in an interview Office Engineering Union journal, that he thought the Post Office monopoly would be broken. He believed that the UK's current
monopolies had tended to become overmonopolies had tended to become ove
bureaucratised and therefore less efficient. According to the report, Frank Chapple has
a plan. To quote Mr Chapple, "The Post a plan. To quote Mr Chapple, "The Post
Office should supply standard equipment. Ofrice should supply standard equipment. ment: the basis should remain in theer hands.
Even in the US you need one mainframe Even in the US you need one mainframe
supplier"; and the POEU journal, "The Post Office could, and should, maintain its
monopoly role in the area of providing the
basic network - what Frank Chapple wants basic network - what Frank Chapple wants
to see is the Post office getting off the end of the line. it's in the area of equipment inter-
connection that the Post Office should get out".

Performers, Producers of Phonograms and Broadcasting Organisations at meetings held
in Paris during September. The meetings were sponsored by Unesco, the World Intelectual Property Organisation and the In The London-based, International Federa ion of Producers of Phonograms and Vide
grams (IFPI) were among eleven other international non-governmental organisations and, according to the IFPI, the Committees' recommendations to national legislators
concerning private recording and home concerning private recording and home
tape-recording were principally due to their
efforts Gill efforts. Gillian Davies, IFPI's assistant, director general said in a press report
released by the IFPI, "I noted with particular
tisfaction that the sub-committees decided ding the meeting, that the conclusions of ith their own current deliberations, should be understood to apply not only to the
udio-visual field but also to sound recor audio-visual field but also to sound recor-
dings. In effect this means that their recommendations to remedy the alarming problem
of home sound recording on cassettes with home sound recoraing on cassettes will be included in the final version of their report to be submitted next year
o the sessions of the Berne Union and the the sessions of the Berne Union and the
ntergovernmental Copyright Committee", The IFPI report says, "On the subject of
private recording in the home, the subprivate recording in the home, the subcertain recordings could be made for personal use in good faith, and such activity was ade copies for sale, nevertheless the owne of the rights suffered a loss in each case that The IFPI are also claiming that recordings should be treated for tax and duty purposes in the same way as books and films. Because it was obviously impossible to
prevent enormous numbers of uncontrolled recordings, while still respecting individual privacy, the sub-committees recommended a system consisting of a single, standard com-
pensatory royalty on the sale price of recording equipment, and on the blank supporting materials, to compensate the professional
groups. This system would not deprive the roups. This system would not deprive the of unlawfully-made recordings being put on the market under the pretext of private use. On the subject of private use, according to
the report, it was considered that the provisions of the Multilateral Copyright Convenions, dealing with the rights of reproduction and public performance, were already
adequate to serve as a basis for national adequate to serve as a basis for rational
legislations-contracts negotiated between he parties concerned ensuring legal security for videocopies an
made for public use.
In the education field, it was noted that, because the use of material for teaching
purposes could be checked more easily than in the case of home-recording the solution to be applied should differ from that of private use. Where there were to be excep. ions, these were to be accompanied by a compulsory lic
remuneration.
The sub-committees stressed the urgent need to identify practical measures to deal with the endless multiplication of recording number of cassettes, audio-visual tapes and number or cassettes, audio-visual tapes and
discs available to users at declining cost, and it was pointed out that these practices were
liable to affect not only the television bodies, but also the phonographic and cinemato raphic industries, whose markets would Iso suffer. It was also decided that the use o
videograms for cable distribution systems, or videograms for cable distribution systems, or
c.c. tv to hospitals and other establishments, was likely to accelerate the process. In conclusion, the sub-committees requsted the secretariats to draw up for con-
sideration by national legislators, an inven sideration by national legislators, an inven
tory of the situations they had examined relating to videogram copyright problems together with their recommended solutions
They intended eventually to see the publica
tion of papers and documents on the subject

Moving map

 covered during the time it takes for the pilo to look at his instrument panel, locate threlevant instrument read and assimite information, look back out of the cockpit and information, look back out of the cockpit an
re-focus his eyes could be nearly a mile Clearly, it is not a good idea to rush about a
Mach 2 with Mach 2 with out a reasonably accurate
knowledge of where one is going, and for this knowledge of where one is going, and for this
reason, electronic displays have been deve
loped and are loped and are being used in increasing
numbers in both military and civil aircraft The Ferranti Comed (short for Combine Map and Electronic Display) is the lates development of the moving map, first seen in maps of the area of interest, these bein presented on a 5.5 in display in the cockpit he navigation sensors - accelerometed by

- normally fitted to the aircraft. In addition he ground can be superimposed, togethe obtained from separate instruments - com munications channel in use, fuel state, time
time to destination, etc. The changing posi-
tion of for example the artificial horizon is tion of, for example, the artificial horizon is simulated by tilting the film by servo. A
television view of the ground ahead can be displayed, obtained by low-light or infra-re

Microwave landing system standard

SPECIAL COMMITTEE has been formed eronautics (RTCA) to prepare a Minimum Operational Performance Standard (MOPS) document for time-reference scanning-beam
microwave landing systems (m.1.s.) airborne receiving equipment. This document, which will describe both the operational require ments and the technical standards for the equipment, is expected to follow the lead o
similar documents which have been adopted by many nations as the standard for the ertification of avionics equipment as recog Organisation (ICAO).
Acording to Aero Line - an American newsletter, published by Aeronautical Radio
Incorporated to inform the public Ra Incorporated to inform the public of the
activities of the Airlines Electronic Engineering Committee (AEEC) - the RTCA Committee emphasized the development of
m.l.s. airborne receivers as the next logical m.I.s. airborne receivers as the next logical
step in the introduction of m.l.s. The news
letter says, "The timeliness of this decision is letter says, "The timeliness of this decision is
tied to recent ICAO actions to adopt TRSB (see p45, June 1978,
standard for m.l.s.

Radio communications to be

used on 'Golden Hind'

(a two-masted vessel with square-sailed

 fore-mast and fore and aft main mast) which left Portsmouth at the end of October tomake a two-year round-the-world voyage to celebrate the 400th anniversary of Sir Francis Drake's circumnavigation of the world, will
be using radio communications equipment supplied by companies in the GEC-Marcon
Electronics Electronics group. Operation Drake, as the
voyage is called is being voyage is called, is being carried out by
parties of experienced explorers, scientists parties of experienc
and young explorers.
Marconi Marine has provided a 400 W Transocean/Pacific s.s.b. radiotelephone to
satisfy the vessel's requirements for m.f. and satisfy the vessel's requirements for m.f. and
h.f. communications with shore-stations around the world, and this equipment is being powered by the ships a.c. mains. Th operated Falcon II m.f./.h.f. radiotelephone as a back-up set, should the mains generator
fail. For communications within 40 mile the coast, the vessel will use the companies Argonaut S v.h.f. radiotelephone. As if this is not enough, at least when compared with the communications which Drake had, or rather
didn't have, Marconi have also provided the
vessel with Survivor II survival craft radio equipment, for emergency purposes. Fur
thermore, v.h.f./f.m. communications for the hermore, v.h.f./f.m. communications for the
overland expeditions which the parties are
mRC353 radion suprovided by three UK and Defence Systems Ltd. According to
Marcent Marconi, the UK/VRC353 is the world's mos
advanced vehicle radio in quantity for the UK Ministry of Defence and is the only v.h.f./f.m. radio system to be
installed in fighting vehicles of the three installed in fighting vehicles of the three
armed services. During Operation Drake these radios will be used to provide com-
munications between the ship and the exmunications between the ship and the ex
plorers' base camps plorers' base camps:
Operation Drake is tunity for 'youth explorers'. The voyage is to be divided into nine, three-month phases,
with the experienced explorers, the scientists and the 24 selecteded young explorers changing over at the end of each phase. The ship will be visiting sites throughout the world where
historical, scientific and medical research will take place and the aim of the operation is to involve both the youth and scientists of
the countries visited to ensure a mutual
exchange the countries visited to ensure a mutual
exchange of ideas and expertise. During the
sea voyages sea voyages the young explorers will be
given given practical training and lectures
prepare them for the scientific work prepare them for the scientific work.
The operation is being paid for by from commerce, industry, charities, in
dividuals and the dividuals and the armed forces in various
countries. HRH agreed to be patron of the venture. Wales ha

Approach radar for Singapore airport

TELECOMS, the Telecommunications that they have awarded Nippon Electric Company Ltd, of Tokyo, Japan, with a contract for the provision of an approach control
radar (ACR) system to be installed at their new international airport, presentlly at being
constructed at Changi constructed at Changi. The new system will consist of a primary
surveillance radar and a second surveillance radar and a secondary sur-
veillance radar and will be integrated into the long range surveillance radar and display
system (LORADS which is also being insystem (LORADS) which is also being in-
stalled at the site. With the primary radar the ACR system will have a range detection
coverage from $1 / 3$ nautical mile to 64 coverage from $1 / 3$ nautical mile to 64
nautical miles, and with the secondary radar
this will be extended to this will be extended to 128 nautical miles.
The system will also operate up to an altitude The system wil
of 40,000 feet.
of 40,000 feet.
Air Air traffic controllers, after taking over
control from other controllers responsible for the long range radar, will use the ACR system to ensure that aircraft land safely at
the airport According to NEC, one of the most
significant features of the new system is its significant features of the new system is its
ability to track and automatically display
aircraft positions with identifications - by aircraft positions with identifications - by
using alpha-numeric symbols displayed on a uscm diameter video screen. This screen also
displays the flight altitude displays the flight altituce and aircraft speed.
Mr Ng Chee Meng, acting general manager for Telecoms, said at a ceremony where the contract was signed, that the integration of
the ACR system with the long range rad the ACR system with the long range radar
would provide greater operational flexibility would provide greater operational flexibility
and efficiency for air traffic control. It is
hoped that the ACR system will hoped that the ACR system will be in opera-
tion by September 1979 and integrated with
the long range system two months later

NEC, who won the contract in the face of American manufacturers who have traditionally supplied air traffic control systems to
Singapore, believe that upon completion of Singapore, believe that upon completion of
the two projects the installation will be one
of the most modern air-triaffic-control sys tems in the world.

News in Brief

Hacker Sound Ltd, well known in the field of portable radios and music centres, has been
acquired by Motoradio Ltd, the Blackburnequipment. The first step has been to move Hacker's production facilities from an old factory at Maidenhead to Motoradio's
modern plant in Bournemouth This isall modern plant in Bournemouth. This is all part
of an expansion scheme by Motoradio. In
future Man future Motoradio's own equipment production will be centred at Blackburn where there
are plans to double the size of the existing
he 6th International Salon "Audiovisua market place for sight and sound, will be held in the Palais des Congres, CIP Paris, Porte
Maillot from 22-27 January, 1979. In addition oexhibits and presentations on the stands with special emphasis being on sound sys-
tems, magnetocopes, video-discs, security
nd surveillance systems electronic and surveillance systems, electronic games
and teleetxt - there is to be a forum entitled
"Illustration of the Audiovisual".

CIRCUIT IDEAS

F.s.k. signal demodulator

 This circuit was designed to demodulate an f.s.k. signal wing pulse width modulation. The circuit uses a 4013 with the first flip-flop arranged as a monostable, positive edge of the input waveform. The monostable period is determined by the time it takes the voltage across the capacitor to reach the threshold voltageof the reset input. The time constant of this voltage is RC. Diode D_{1} discharges the capacitor when the Q output is reset to 0 . If the input mark period is greater than the monostable period, a 1 is clocked into the second
converse is true, a 0 is clocked into the second flip-flop. Therefore, the Q output of this flip-flop is a 0 for the low frequency and a 1 for the high frequency. The monostable pulse length
T is given approximately by 0.693 RC if T is given approximately boltage is 0.5 of the supply voltage. The expected variation of T is about $\pm 30 \%$ so R needs to be variable. G. Prusiewic

Programmable duty-

 cycle frequency
divider

Simple frequency division using flipflops is sometimes unsuitable because of their 50% duty cycle output. This circuit is more flexible because the duty cycle can be programmed. Two digita counter with numbers set by the thumb wheel switches, and a flip-flop alternately presents the outputs of the comparators to the reset input of the counter. The output of the flip-flop
therefore has on and off periods equal to therefore has on and off periods equal to
the switch numbers multiplied by the repetition time of the clock input to the counter.
. R. Srinivasa Murthy
Bangalo

Polarity indicato

In applications where the polarity of a
signal applied to a perfect rectifier needs to be detected, the conventional method is to use a comparator. This system adds undesirable switching noise to the signal, and may oscillate for low-level signals. A small modification, as shown, circuit offers a more reliable indication of polarity. This circuit will operate with ow frequency signals of less than 1 mV $\stackrel{\text { pk-pk. }}{\text { The }}$
The additional voltage drop across D_{1} ensures that the transistor switche
 hal changes. Frequency respon: of his rectifier is not quite so good as the unmodified circuit. The resistor is 22 collecto c.m.o.s. from any logic supply voltage For t.t.l., the pull-up resistor should be changed to 3 k 9 to drive one input. For precision applications, the op-amp hould be offset nulled.
T. Hughes
outh Afric

Simple two-wire

intercom

The circuit shows a simple batter powered two-station two-wire intercom which does not dissipate any standby power. If NiCd batteries are used charge the other through the loud speakers.
speakers.
Ole Holmskov
Heerning
Hoerning

Triple rail power

supply

When it is necessary to interface logic circuits such as t.t.I. to a calculator chip which uses a cold-cathode display, one solution is to use level translators. number of components. The alternative is to run the t.t.1. from a displacedvoltage power supply. The circuit shown gives outputs of 5 V and -10 V although these can be easily changed. ferences between the load currents, aithough the efficiency is at maximum when both currents are equal.
G. Robinson,
C. P. Harw
R. Daniel

Brunel University

(b)

Gated op-amp

If the output of an operational amplifier needs to be gated, this can often be achieved with one transistor and two
resistors as shown. When the transistor resistors as shown. Whe the transistor
is off the op-amp receives power via R_{1} and R_{2}. When the transistor is on, the op-amp supply is removed. As this arrangement increases the source impedance of the power supply, the
op-amp should be lightly loaded. The op-amp should be lightly loaded. The
full rail voltages appear across R_{1} and R_{2} which will draw more current than the op-amp. The general purpose transistor shown can be a p-n-p type for opposite logic levels.
M. Feeney

Northumberland

Simple bounce-free switch

A single non-inverting gate or buffer
wired as shown forms a wired as shown forms a bistable circuit than unity. Whilst the switch is in the up
becase the por position, the output will be high. When the switch leaves this position and is in transit, the output remains high because the input is still high. When the
switch first makes contact with the lower position, the output of the gate is momentarily shorted. This situation is however remedied within a few nanoseconds because the input is also taken to ground which drives the if the
put of the gate low. Thereafter, if the
witch contact bounces the output wil stay low because the input is low. This single non-inverting gate SR flip-flop, and the annoying pull-up resistors are eliminated P. Seligman
Victoria

A Australia

zero output

At least one output from a typical de-
cade counter; such as the 4017 is always activated, and normally the Q_{0} state becomes a 1 on reset. There are times when no output from the zero state is
required, while a true count of ten is still wanted. The most economical circuit is accomplished by the addition of a bistable stage using two dual-input NAND gates. Decoding uses a third gate and
the fourth gate is used as an inverter. the fourth gate is used as an inverter.
With the circuit in the reset state, Q is a 1, but because of gate A of the bistable is at 0 the output of gate C is 1 and Q_{0}^{\prime} is 0 . Application of an input pulse resets the bistable without incrementing the
counter, so the Q^{\prime} output becomes 1. counter, so the Q_{0}^{\prime} output becomes 1 .
Subsequent pulses step the 4017 in the conventional manner. A negative pulse resets b both the counter and the bistable.

nockh

Kent

Versatile sound generator

New i.c. offers numerous audio waveforms

Fig. 4. Noise generator and low pass filter. The nominal resistor value at pin
4 is $47 \mathrm{k} \Omega$ although this can be increased to $100 \mathrm{k} \Omega$

Fig. 5. Mixer circuit. The input signals are multiplexed and not summed.

Fig. 6. Envelope generator and modulator. With mixer only or one-shot selected, the attack ramp starts when the system enable pin is taken low. If v.c.c.o or or v.c.o. with
alternating cycles is selected the alternating cycles is selected, the attack ramp starts on each positive edge or every other positive edge of the v.c.o. output.

WIRELESS WORLD. JANUARY 1979 inputs can be used. A logic 1 on pin 22 enables comparator 2 so that the v.c.o. is controlled by the l.f.o. triangular
output. A logic 0 on pin 22 enables comparator 3 so that the v.c.o. can be controlled by an external voltage on pin 16. Comparator 1 is used as a pitch control and only affects the mark-tospace ratio of the v.c.o. output. The
minimum output frequency is set by the external resistor and capacitor on pins 18 and 17 , and is $0.64 / R C$. The control voltage, which should be 0 to 2.5 V , will give a $10: 1$ change in frequency which
increases towards 0 V . increases towards 0 V . greater than $4.7 \mathrm{k} \Omega$ to prevent an ex cessive charging current. Because the v.c.o. can be controlled by the l.f.o., an ditional extern provided at pin 21

The noise generator is formed by a ring oscillator, shift register, and a low-pas filter as shown in Fig. 4. The osclparn frequency is controlled by an externa taking pin 4 to +5 V . In this case an external 5 V pk -pk oscillator can be fed register. This technique is useful if a slower or more precise clock is needed. The shift register produces pseudo random white noise which is passed filter, with a 3 dB frequency of $1.28 / R C$ If filtering is not required, the capacito at pin 6 can be omitted; but a resistor of at least $4.7 \mathrm{k} \Omega$ must be left at pin 5 .

The mixer is a NAND gate multiplexe which selects one or a combination of he inputs and feeds the output to the mixer output is an AND function and therefore does not sum the input signals to produce simultaneous sounds. A truth table for the mixer is shown be low

$\stackrel{\text { (pin 27) }}{\mathbf{c}}$	$\underset{(\operatorname{pin} 25)}{\mathrm{B}}$	${ }_{(\operatorname{pin} 28)}^{A}$	output
0			v.c.o.
0		1	1.f.o.
0	1	0	noise
\bigcirc	1	1	v.c.o./noise
1	0	0	1.f.o. / noise
1	0	1	I.f.o./v.c.o./nois
1	1	\bigcirc	lifo.o.v.c.o.
1	1	1	inhibit

These inputs can be selected by external logic circuits, three changeover switches, or by a rotary switch with a suita logic levels of 0 and +5 V should be
used. The envelope select logic determines
the envelope which is given to the signal after the sound sources have been mixed, Fig. 6. Pins 1 and 28 are pro-
grammed with logic levels and the truth table below shows the envelopes that are produced

WiRELESS WORLD, JANUARY 1979

Fig. 7. One-shot circuit.

Pin 1	Pin 28	Output
	0	v.c.o:- ${ }^{\text {a }}$
0		mixer only
1		- $\begin{aligned} & \text { one-shot } \\ & \text { v.c.o. with }\end{aligned}$

Again, the input can be programmed by switches or other logic circuitry. When mixer only is selected the output is not shaped. The external resistors at pins 10
and 7 set internal currents which charge and dischage the external capacitor at pin 8.
Because these linear charging ramps are used to alter the rise and fall times of the envelope, the resistors and capaci-
tor can be used as attack and decay controls. If these controls are not required the resistor at pin 10 must still be used. As in the l.f.o., if exponential attack and decay slopes are required, a capacitor.

The system enable circuit in Fig. 6 acts as an on/off switch for the sound output when a logic 1 or 0 is applied to pin 9 . shot circuit in Fig. 7 with a negativegoing edge. Pin 9 has an internal $15 \mathrm{k} \Omega$ pull-down resistor so that if the input is not used he circur nabled.
For momentary sounds, the one-shot
atch can be used which has a duration determined by the RC time constant at pins 23 and 24 . The comparator switches when the capacitor voltage reaches the. then reset. Pin 9 must be held low for the duration of the one-shot, and can only be used when the correct envelope select logic has been programmed. Any attack time which has been set will However, any decay time which has also been set will not occupy part of the one shot period, but will be added at the

The output stage in Fig. 6 is an op-amp designed to interface with external

g. 9. Practical circuit for producing a siren/phasor gün sound.
sound modulators or further amplifyin stages. Because the output is an emitter follower without a load resistor, pin 13 should have a resistor connected to $10 \mathrm{k} \Omega$, and ranging in value from 2.7 t Pea where R_{F} is the feedback resistor at pin 12 and R_{G} is the gain resistor at pin 11 The output range is limited to 2.5 V The resistor at pin 11 is the main control for output amplitude, and may be varied from $27 \mathrm{k} \Omega$ to $220 \mathrm{k} \Omega$ fo amplitude modulation. Feedback resis or R_{F} is intended to compensate fo can be added to the output if a suitable feedback circuit is used instead of the resistor.

More complex sounds

Although the ic can synthesize a wide variety of sounds by simple programming, highly complex waveforms can be produced with the aid of externa circuitry. When two sounds are re oscillator can be used to switch th mixer select lines at a frequency of between 20 and 100 kHz . If different output amplitudes are required, th mark-to-space ratio of the scillato atput can be altered counter can repa, a shift register witch or potentioplace the manual ially connect preselected resisto values. For more ambitious pro grammes a 1 K r.a.m. could be used, fo example, to play 16 different 16 -not tunes. Although the device does not have an external input for the mixer, which would be useful for interfacing the i.c
with other sound sources, externa signals can be fed in via pin 12. An which can be used to add a voice signal to the sound output.

Practical circuits

The simple demonstration circuit in Fig. 9 produces a "siren/phasor gun" sound.
For more varied waveforms, how ever, it is worthwhile constructing an evaluation circuit such as the example in Fig. 10 which allows waveforms to be switches and potentiometers mixer select inputs have an optiona square wave generator as described earlier, and the low frequency oscillator can be sequentially programmed usin a decade counter. set all of the time constants to th mid-values, and start by programming the mixer and envelope select logic achieved the noise mave waverm is tone can be adjusted, followed by the more subtle effects of attack/decay and amplitude.

Fig. 10. Evaluation circuit. The 555 square-wave generator can be used to multiplex the mixer output, and the counter can be used to sequentially switch resistor values. Diodes are us
so that the 74LS90 cannot source current into pin 20.
For miscellaneous waveforms and Sound effects the 76477 is a very ver
satile and economical device. However satile and economical device. However,
following some experiments with an electronic organ design, general stability problems make the i.c. unsuit
able for use in an electronic instrument able for use in an electronic instrument
Nevertheless, the prospect of interfacing the device to a microprocessor may well lead to a new breed of soundeffect generators.

Printed circuit board
A glass fibre p.c.b. is available from MR. Sagin at 23 Keyes Road, London N.W. for $£ 4.50$. The board, which is based on the evaluation circuit in Fig. 10, accommodates p.c.b. mounting slide switche We understand that the SN 76477 N can be supplied by Technomatic Ltd, 17 Burnley Road, London N.W.10.

Surround sound patents

Will the future of surround sound depend on patent bargaining?

by Adrian Hope

The modern history of surround sound
has been the subject of regular reports i these pages. Inevitably, less has been written on the past history of
multi-channel sound, and the patent literature contains a number of surprising
revelations. It is also fruitful at the same time to examine the more modern patent literature, because this helps put into perspective current claims, disputes and commercial alliances in the
surround-sound field. Moreover an
understanding of the patent situation both ancient and modern, may also be of value to those involved in the production of surround sound equipment and interested either in patenting their own encroach on ideas covered by current patents.

A PATENT IS A BARGAIN struck between the inventor and whichever country grants him the patent. The tion to the patent office of the country in question - virtually every industrial country has a patents system - and if the patent office adjudges the idea novel a temporary monopoly is granted
to the inventor. to the inventor.
Then, for a lim
inventor has the opportunity of preventing others from using the same idea. But simultaneously, as part of the bargain, the patent office publishes the
details of the patented invention to the public. The disclosure document or patent, is from the moment of publication, a free source of information to the public. (The Holborn Science Reference has a full set of patents from most industrial countries, including, of course, the UK. Copies of these may be bought, at a price dependent on length, or at a flat
British.) Once
Once the patent has expired, either by or by failure of the inventor to pay any renewal fees that are necessary, the invention as disclosed by the publishe document passes into the public British patent will last 20 years in conformity with many other countries The previous term was 16 years.) It is herefore, a safe bet that any technica over 20 years old will belong to the public. Generally speaking, that infor-
mation cannot then be re-patented by he inyentor or anyone else. It is clear from the patent records, that a surprising number of audio ideas applicable o surround sound are well and trul As early as 1878, October 22nd to be precise, Thomas Alva Edison completed the filing of an important patent appli cation in Britain. This issued as BP1644 1878, and it contained, just ten month passage that pre-empted the idea of multi-channel recording. Edison ketched and described a cylinder heads, simultaneously tracking different parts of the same cylinder. "Fou persons may speak simultaneously and ave records made in separate, paralle ines upon one cylinder, and the phono gram will reproduce the sounds the of but one voice," said Edison. Who say four-channel recording is new?
In 1881, a system was demonstrated by Clement Ader at the Paris Electrica much of the modern binaural and dummy-head stereo work. Eighty o he newly-invented Bell telephone were used to transmit the sound of usic from the orchestra of the Grand Exhibition. According to a contempo rary report, a "new acoustic effect" wa discovered by accident. It was found hat if the listener took two, rather tha ach ear, the sound heard took on new dimension. A "special character o relief and localisation" was ex perienced, for the simple reason that the ound fed to the listener's left ear wa the sound fed to the right ear was or inating from another microphone spaced from the first. Presumably th most realistic effects were heard by pickedsteners who had by pure chanc microphones spaced apart by a distance comparable to that between the ears of the human head. Although there is no record of a patent filed on this process, surely represents the first disclosure of transmission.
Incidentally, at the turn of the cen tury cylinder recordings were made by artist in a expedient of putting the dozen cylinder recording machines That way, without recourse to duplica-
tion which for cylinders was then tech nically difficult, or dubbing which de graded quality, one recording could produce several dozen cylinders American recording engineer Jerry
Bruck has argued that at least some of those recording machines must inevit ably have had their horns spaced apart by the ideal distance for a crossed-pai recording. All that remains now is to find the right pair of cylinders from the same recording session and dub them
together onto tape as left and right channel sound records of the original performance.
Probably the earliest disclosure of and patent on, a multi-channel recor
ding is to be found in BP23620 of 1911 This patent, granted to Augustus Rosenberg of High Holborn, London proposed a cinema sound recording and reproduction system which enabled
"two synchronous sound-records (to) two synchronous sound-records (to) front of the stage, or scene of the in cidents to be recorded". The sound records were to be "produced photo graphically side by side upon a single
strip", with reproduction through "sound reproducing devices placed a or near each end of the screen", to produce sound from the screen "in accordance with the movements of the apparent source of sound from side to
side of the picture". Particularly important is the suggestion in this 1911 document that "the number of sound records employed is not limited to two" ward in time and note that Fred and Ralph Walker of New York patented the Cinerama film and sound system as long ago as 1937 (BP518905) with the object of increasing the illusion of being in and surrounded by an environment b In USA patent 1855149 of 1927, W Bartlett Jones of Chicago described in some detail the now well-known effect of binaural sound, and suggested that
the two channels of sound necessary the two channels of sound necessary by using two radio wavelengths, or by adoption of multiplex techniques "so that a single wavelength may be used to broaccast wo efects. Bartlett Jone channels of sound could be recorded using either a film record, or a disc with one effect on each side or a double or side-by-side groove. Alternatively, and most important, he went further to
suggest that the disadvantages of recording separate channels in separate

WIRELESS WORLD. JANUARY 1979
grooves "may be avoided by providing of sound groove are now employed, one
varying vertically a and one varying varying vertically and one varying
horizontally. A groove may be made horizontally. A groove may be made
which varies vertically for one effect and which varies laterally for the other effect."
Thus by 1927 the notion of recording surround sound using binaural techniques and the vertical-horizontal
modulation of a single groove was already old. Indeed, the notion of recording two channels of sound in a single groove modulated both laterally and
vertically was already old in 1920. In July of that year, Samuel Waters of Washington filed USA patent 1520378, which claimed an acoustic gramophone using a pick-up with orthogonally
related components, to track a groove related components, to track a groove
modulated by orthogonally related vibrations. But again, Waters was interested only in vertical-lateral modulations and, like Bartlett Jones seven years later, was interested in keeping
the two channels of sound separate. Ine two channels of sound separate.
Incidentally, Waters was concerned with improving signal to noise ratio, rather than reproducing sound in three dimensions.

IT WAS IN 1931 that Alan Blumlein filed, BP394325, which disclosed the principle of $45: 45$ modulation and while not the foundation to modern surroundsound matrixing: Blumlein was the first to think of two channels as a means of transmitting or recording a composite
of information for subsequent struction into a usable format. Although concerned mainly with twomicrophone recording and twosuggest in passing the possibility of using "four or more loudspeakers" in a vertical pattern and microphones arranged "one above the other \ldots to provide significance of vertical as well, source".
Contrary to popular misconcention, Contrary to popular misconception,
Blumlein did not describe quadBlumlein did not describe quad-
raphonics or four loudspeakers in a quadrangle. What he did was reveal, and
take advantage of, the psycho-acoustic phenomenon whereby the human ear/ brain combination will hear a phantom spread of sound when facing two loudspeakers reproducing two channels
of information containing amplitude of information containing amplitude
variations to provide directional clues. Ironically although it is on Blumlein's patented approach to signal matrixing that modern surround-sound encoding
is based, it is the illogical extencion is based, it is the illogical extension of
Blumlein's pair-blend loudspeaker stereo ideas to a quadrilateral that has led so many surround sound designers. into blind alleys. As Blumlein surely 'well knew, pair-blending works properly only when the listener faces the
loudspeaker pair, and in a quadraphonic set-up only one loudspeaker pair can be faced at a time.

Even before Blumlein filed his patent application, Arthur Keller of Bell Labs which issued as USA Patent 1910254. This document, dated 1929, discloses an signal recording and transmission and has subsequently been developed and adopted by JVC and Nippon Columbia.
Keller used a modulator to Keller used a modulator to combine
or multiplex the separate sound channels, by displacing them in the frequency scale "to form a progressive series of bands separated by suitable intervals". The multiplex approach was
refined by William Livy of BP612163, filed in 1946. Livy proposed a solution to the problems produced by speed fluctuation during reproduction of a multiplex disc. He proposed that a high frequency carrier be recorded on
the disc along with the programme and the disc along with the programme, and
used on replay "to lock the oscillator in the reproducing apparatus in synchronism, so that if the speed of the record varies the frequency of the
oscillator will likewise vary in the oscillator will likewise vary in the same
ratio". In 1954, Kenneth Hammon of Ohio filed US patent 2849540 , which developed the Livy idea further, to improve quality and frequency range,
and relied on a 30 kHz carrier. and relied on a 30 kHz carrier. Peter Scheiber of New York is
generally acknowledged as the first to use a matrix technique of Blumlein descendence to encode four signals into two channels. The Scheiber master . patents BP1328141 and 1328142 are now under the CBS wing, and it is interesting
to note that a computer error allowed them both to lapse for a while, due to inadvertent non-payment of renewal fees! In fact CBS holds an extensive string of patents and more are continuconveniently representative of the basic SQ system, and BP1303021 is similarly representative of the basic QS system. The Tate signal-dependent decoder is
described and patented in BP1514162 described and patented in BP1514162 the CBS wing. BP1402320 covers the Variomatrix decoder which is, of course, Sansui's signal-dependent process. (The Sansui circuit has been used
by the BBC to enhance Matrix coding.)
Other important patents applied for early in the 1970's included USA 3417203 and British patent 1356843, both in the
name of David Hafler. The tast mentioned is particularly interesting because it disclosed the basics of the so-called Hafler system for producing
four-speaker stereo with a loudspeaker four-speaker stereo with a loudspeaker matrix. But Hafler prior-published the
substance of BP1356843 in Hi-fi News, and therefore invalidated this aspect of the patent.
MOVING UP TO DATE, the original
Ambisonics patent was BPi 369813 Ambisonics patent was BP1369813, to BP1411994. This latter patent
claimed the BMX claimed the BMX matrix developed by
Duane Cooper in the USA and has for
everal years been under the wing of Nippon Columbia. The BBC, inciden eg. BP1414166 son a BMX-style matrix British patent application $34839 / 74$ by British patent application $34839 / 74$ by
the BBC. Although secret, this has been publicised as containing a claim to the use of a Sansui Variomatrix decoder with a phase shifter of 60°. If the report is correct, here is a novel approach to patent novelty - like claiming patent
monopoly on a well known flagpole monopoly tilted to 60° a well known flagpole Patents continue to issue on matrix encoding, multiplex and combined matrix-multiplex techniques from a
world-wide range of companies Examples of patents for extra-channel radio transmission systems are BP1367429 from Siemens and BP1377138 from Matsushita. It is likely that the
Siemens patent may prove the master siemens patent may prove the master channel transmission. The stream of issuing patents continues still because there is a lag between application and publication, and we are still reaping the dubious benefits of research en-
thusiasms now several years old. Almost certainly it is the number of mutually conflicting patents now issued that has produced a more adult approach by the competitive com-
panies. Such a tangled web of conflicting patent rights has developed that, as with radio in its infancy, a degree of patent pooling has become inevitable if progress in the field is to continue
without the largely unnecessary without the largely unnece
pense and delay of litigation
Recently for instance CBS has received patents in the UK on modifications of the SQ system which involve the transmission and recording of extra manner (BP1504391 and 1504392). This suggests an overlap of patent monopoly between CBS and the string of firms more traditionally associated with the multiplex approach to multi-channel recording and transmission. The or-
iginal Ambisonics - NRDC British patent 1369813 has now been followed by BP's 1494751 and 1494752 which respectively protect the concept of
frequency-dependent decoding for frequency-dependent decoding for
improved sound localization and variable decoding to match the performance of a system to the shape of the room and number of speakers used. The Calrec sound field microphone, now
being used by both the BBC and IBA, is being used by both the BBC and IBA, is
clearly based on another NRDC Ambisonics patent, BP1512514. Other patents based on Michael Gerzon's work are believed to be in the pipeline to grant. The BBC, IBA, Nippon Columbia and NRDC are already informally
pooling patent rights and with the rights of Scheiber and Tate aligned with the giant CBS and the interests and allegiances of Sansui and JVC currently ill-defined, the commercial future of
surround sound must depend as much on patent politics as system perfor-
mance.

Measuring Frequency? Just asecond!

The Feedback FM6Io will make even the testiest tester smile.

WIRELESS WORLD. JANUARY 1979

Eddystone's new 1837/1838 series of highgrade h.f. communications receivers covers most general-purpose applications in professional and military communication, including marine use where speech, telegraphy or f.s.k. teleprinter signals are employed. A particular feature of the new receivers is the unique method used for frequency stabilization which provides the convenience of manual tuning with the facility for locking the frequency to a high degree of accuracy

The 1837/. 1838 series has been approved by the British Ministry of Posts and Telegraphs as complying fully with specifications MPT 1201 $1216,1217,1204$. Reliability is an outstanding feature, and the performance is maintained under severe environmental conditions of climate and location.
Please ask for full details: 1837/1 Ship's Main and Reserve Receiver: 1837/2 General-Purpose High Stability Receiver: 1838 Series GeneralPurpose Telephony Receiver.

Eddystone Radio Limited

Member Ma comicommuncation Systems Limited
Alvechurch Road, Birmingham B31 3PP, Engla
Telephone :021-475 2231 Telex:337081
A GEC-Marconi Electronics Company

ENGINEERS, GET OUT OF BRITAIN
I am amazed to see "Mixer" treating the
news that "A" level students shun careers in industry with such levity (October issue). Lack of really first-rate people in engineering
is probably one of the greatest is probably one of the greatest problems
facing British industry today. Nevertheless, one cannot blame either the students or their
teachers for this attitude. The fact is that teachers for this attitude. The fact is that
engineering is not regarded as a respectable engineering is not regarded as a respectable
profession in Britain, an attitude which is profession in Britain, an attitude which is
repeatedly emphasised by the salaries offered
for senior responsible engineering jobs repeatedy emphasised by
f am a a readuate in engineering jobs.
jobred I am a graduate in electrical engineering
with twelve years' post-graduate experience, wthtelve years post-graduate experience,
spent partly in R $\& D$ and partly in production
engineering engineering. In 1972 I chose to leave Britain
because I saw no prospect of ever having a reasonable standard of living there. Here in Belgium, I have a basic salary of about
£19,500. Even allowing for differences in cost E19,500. Even allowing for differences in cost of living, taxation etc., I would need a basic
salary of about $£ 15,000$ to maintain the same standard of living in the UK. Judging from job adverts currently appearing in the natio-
nal and technical presses, I would be extremely fortunate to get an offer of $£ 8,000$. I for one am quite happy to stay here where professional, graduate engineers are
regarded as social and professional equals to doctors, lawyers, etc., and I would recommend any Britons unfortunate enough to
have chosen engineering as a career to have chosen engineering as a career
seriously consider leaving the country. I know of no other country in the world where engineering is so poorly regarded and
remunerated as in the U.K. The blame must remunerated as in the U.K. The blame must
largely rest with the engineers themselves, of
course, for accepting the disdain with which their profession is seen by management and public alike. I am, however, sure of two
things: British industry will be unable to attract top students until and unless the engineering profession be given correspond-
ing status to that of the "respectable" ing status to that of the "respectable"
professions; and British industry will not make the long talked about recovery until and unless top students can be persuaded to
choose careers in industry. J. W. Pepper

Brussels
Belgium

3D TELEVISION professor D. A. Bell, writing about three-
dimensional television in the Nowe immensional television in the November
issue, dismisses the two colour (anaglyph) process for "entertainment television." Bu
what about the odd 20% of television time what about the odd to of of television time
which is intended to educational rather than entertainment? I have always maintained that a 3D picture in mono is
much more informative than a 2 D colour picture and there are many programmes which would be more immediately compreensible by the use of the anaglyph system
Perhaps we could persuade the BBC to in clude pieces of red and green transparen offee paper in an issue of the Radio Times and give us a "Tomorrow's World" in 3D Meanwhile perhaps readers would be nterested to hear of my own private metho of obtaining true stereoscopic pictures from
an ordinary 2 D television set. I have som cores of pairs of photographs of most cele brated people and places, taken over the last
wo or three years. The secret is to watch for

an angular change between subject and quick succession - perhaps a half to one second in time apart. Briefly the conditions
arise when (1) the camera is seen to arise when (1) the camera is seen to 'crab' ound the subject, which it frequently does helicopters;, (2) when advantage is aken of small changes of angle of close-up heads these might require several shots to find
suitable pair; and (3) when the object is sutrable pair; and (3) when the object is
turning on a turntable. It is almost essentia that the camera is motorized, and it is bette if it has an interlens shutter. The exposure
with a 125 ASA film - which may be colour is of the order of $1 / 30$ th second at $f 3.5$ at normal brightness of picture. The television course. The process requires alertness and deftrness, and a sympathetic family John T. Lloyd
Glasgow

RELATIVITY AND
TIME SIGNALS
Dr Essen (December letters) deserves an
answer. Dr Grifitith doesn't supply it. Howanswer. Dr Griffiths doesn't supply it. How-
ever,
following fortunate enough to tune in to the Martian (M) and an Earthling (E). It might help if I quote it. Mhat you chaps have dreamed up. Can you suggest an experiment? E: Yes. When you are ready send m
twenty pulses at one second intervals tyenty pulses at one second intervals b my clock.
M: I received twenty pulses but they were no E: Of course intervals.
after making the necessary twenty also but after making the necessary Doppler correc $\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ where v is your velocity M: How did you know my velocity? E: Easy enough. You are on your usual carrier frequency so 1 could ind your
velocity by doing a Doppler correction to it (relativistic of course). M: $:$ 'm sorry but it seems to me like a circula
argument argument.
E some loose ends somewhere. The only way to
keep an argument free from paradox is to
make it circular!

M: It seems to me there is only one thing we
do agree about. There were no missing ticks dit Ye..es. Are you sure you sent twenty? M: of course I am. I can count. Once round my Er ingers and toes! but youre a Martian.
G.F.F.illey
School of Phys

School of Physics
Polytechnic of the South Bank

RAILWAY PUBLIC
ADDRESS
was not at all distressed to read of Mixer travails with the public address system at
London Bridge Station; in fact, I was rather gleeful. For we have the cure to the problem, in fact have had it for years. It's our Speech
Enhancer, which was originally developed to Enhancer, which was originally developed to
counter Soviet jamming of Israeli radio broadcasts, and which worked very well at it broadcasts, and which worked very w.
during the Yom Kipur War of 1973 . What the Speech Enhancer does is to
reduce the level of vowels relative to nants. In English, as in most languages, the vowels contain the energy and the conso
nants contain the information ference in energy ranges from 20 dB to 60 dB or occassionally more. How much energy is
there in a stop? there in a stop?
Fairly consistently, at the 90% intel $d B$ in same intelig signality in white noise, for the same peak signal level. Translated, this means that for the same amplifier power, you
get the same intelligibility at the 90%, level if you increase the white noise by $12-13 \mathrm{~dB}$, o alternatively, for the same environment, you
can cut the amplifier peak power by a factor can cut the
of 20 or so.
With normal speech the intelligibility falls
off slowly so that if the noise geos you might catch one word out of two With you might catch one word out of two. Wit that if the noise goes up 3dB, you won' understand anything. The speech has a dif
ferent quality than normal speech; it tends to ferent quality than normal speech,
cut through and demand attention. Now the pitch. We should be delighted to sell Speech Enhancers to the British
Railways, or to anyone else in Britain. (By the way, they are low power devices which
consume about one consume about one watt and go between the
microphone and the amplifier. There is only microphone and the amplifier. There is only
one control - a pot used to adjust input level one control - a pot used to adjust input leve

- and one indicator, a l.e.d. which flashes
when the ortion when the optimum peak input level is passed
on speech bursts.) Yale Jay Lubkin
Ben Franklin Industries Ltd
Casey Creek, Kentucky USA

On page 98 of the October issue "Mixer" says: ". . it must surely be possible to design
something that is at least intelligible." of
course it is! somerse it is!
Soon after the war British Railways instal led at Liverpool Street, Charing Cross, London Bridge, and probably other stations, well. The design and installat worked really I remember correctly by Rediffusion Limited. The essence of the scheme was that it employed many low output loudspeakers
close overhead, instead of the horns that had been used before. Another feature of the Rediffusion design was that it
included a form of a.g.c. which boosted the

WIRELESS WORLD. JANUAAY 1979
necessary to isolate the receiver/transmitter
inputs from the input of the wise the first multiplier could have a te dency to be unstable.
3. Regarding the
3. Regarding the pull-up resistor between

the $74 \mathrm{LS74} \mathrm{o} / \mathrm{p}$ and the 4059, it was foun | the |
| :--- |
| that this resistor pulled the t.t.l. 0 o/p up to 80% | of the c.m.o.s. supply and was quite adequat grounded base), I found there was n mprovement in performance. The use of pull-up resistor to interface t.t.l. $\overline{5 V}$ logic to

cmos level is quite normal practice no detrimental effects on either device. 4. It should also be noted that the outpu (160 ms) and only occurs about every 1 ms ; consequence it may be difficult to see this pulse on lower-grade oscilloscopes. To over monostable to the output to pulse stretch 5. The supply to the v.c.o. must be abso will resulse fre, ill result
be adequate detector crystal was foun unately the use of repeaters combined with perators using wide deviation can lead to he overloading of the crystal. To overcom ris problem in the prototype the 10.7 MH
crystal was replaced with a 10.7 MHz ceramic
offects the overation moditication adversely frects the operation of the mute circuit an porated.
This circuit is also used to stop the auto scan circuit (Fig. 2) which then holds on th during which time "hold" can be selected otherwise the scan continues.
Fig. 3 shows a circuit which is now in use in he author's transceiver to replace the costly to work as well as the i.c., but is still unde valuation.
The phase output pulses for the 4046 (pin 1) until the loop settles, if this is though necessary. In the prototype this was not corporated as it took approximately 80 m RC time constants, etc.) by which time the oop was stable
However, some time ago these phase give a transmitter lock out, in the event of the synthesizer losing lock.
I hope that the above points are of some glad to see (gauging by the number of letter I have seen regarding the design) that ther are still some real radio amateurs around an
not just black box operators as I was begin-
ning to believe.
Forrester
St Annes
Lancs

INTELLIGENT
MACHINERY
Your editorial on intelligent machines (November) seems to me a bit gloomy. Any
machine that claims to even minor intel igence ought to be able
(1) to query data you put into it on the ground that there is probably something
wrong with it - even today it seems assumed that you can put nonsense into a compute
and it somehow becomes transmuted into
sense on the way through its learned bowels
(2) to tell you after looking at the data that you are asking the wrong questions; and 3) if it is to be used by the majority of $R \& D$ people such as I have met with these past 40
years, the ability to tell you that you are running up a blind alley. any kind will put people out of work. I have any kind will put people out of work. I hav
yet to find a firm installing one who did no find that they employed more people tha before just because the thing did quee
effects about once a year and the time in volved in clearing them up made the extra staff necessary. Me, I shall wait and see
always prepared to have a good laugh always prepared to
Philip Smethurst
Bolton
Lancs

BICYCLE DYNAMOS In his original Circuit Idea Mr Pollard seemed to be dealing with bicycle dynamos in comments on my letter in the October issue that he is concerned Regarding the Regarding the first, of eighteen years ago,
which burnt out its tail lamp, perhaps I can help him. I had a look at such a one, said tobe
of about that age, which had stamped on it "6 of about that age, which had stamped on it "6
volts 3.6 watts." It has an 8 pole magnet, incidentally. The use of bulbs which do not take a total of 0.6 amps or more at 6 volts
would produce the effect he observed As for the second, which doesn't give more than 5 volts, and so on, if the magnet is in order (which it seems to be) his trouble is ${ }_{\text {part }}$ way along the coil system. It is suspicious that he gives the d.c. coil resistance as 2.5 ohms, by the way: the old dynamo I saw
had 3.2 ohms according to an Avo It is quite useless for Mr Pollard to postulate the necessity for electronic changeover circuls men. He should begin by requesting the makers to exchange what he has for a good one, and then move on to bicycle dynamos in general be
P. Short
University
University of Newcastle-upon-Tyne

MOBILE CB DANGERS

 I would like to add my voice to those of the many (I hope) people who are opposed to the Kingdom.Kingdom.
My reasoning is not so much against the
use of home based stations, but against the My reasoning is not so much against the possible introduction of mobile stations.
Communication while on the move is indeed a serious business, and I believe it is frowned upon by our police force. Mobile comits effects on a driver's decisions, e.g. an Open its effects on a driver's decisions, e.g. an open
University production "Just an accident?" on October 2 nd, 1978 was a documentary on
research carried out by a university research group. The group was conducting experiments on many drivers, where a driver had to negotiate a course, consisting of driving
through two posts. The posts were situated through two posts. The posts were situated either not go through them, and thus knock them down, or they were not spaced so close
so that the car would clear them. After a
munication with the driver) the car was fomwith a transceiver. The driver was than asked to negotiate the course while answering questions. It was found that there was a 40%
increase in the number of times each drive tried to get through a gap that was too small
for the car for the car.
If these r
it these results are compared with those busy city or crowded streets, then I believe if
that driver were engaged in communiction on a c.b. mobile rig, his chances of havication an accident would dramatically increase. This situation would also apply to radio-telephone
systems and systems
while mobile communications, but if dozens of inexperienced c.b. users suddenly take to the suddenly rise. I think that experienced communicators (amateurs and professionals) should be allowed to continue, but surely the convenience that mobile c.b. might bring is
heavily outweighed by the cost of people's lives.
C. Riley
Noottingham

HI-FI IN The controversy over subjective vs. objec-
tive assessment of audio tinues noisily. In the hope that, if nothing else, it will result in a quiet spell of contemplation, may one of the engineering pro-
fession's geriatrics drag a hitherto ignored factor in to the debate?
The subjective lads always have one dis tinctly frayed around the edges "ace" up
their sleeves, which gets dragged out whenever the objective arguments start to get a bit too conclusive for comfort. "Ah!" they say "But why is it that transducers often measure yet invariably sound different?"
Why, indeed. Well, since I'm a little too old to derive comfort from burning joss sticks "Musicality, musicality, musicality..." let's have a look at pickup cartridges since these are invariably held high as the arch villains in
the scenario he scenario
A recent conmission gave me the chance
to investigate some conflicting measurements on a range of cartridges imported into
the UK - chiefly a sharp difference between those supplied by the manufacturer and those checked by the UK agency. It didn't ake long to spot hap ambient temperature of $24^{\circ} \mathrm{C}$ which for those who ostill yearn for the pre-EEC era, is close to near hothouse conditiont It home, this is surprise, then, that at some $5^{\circ} \mathrm{C}$ lower the mplitude response fell right out of acceptnd we tarted to get and we started to get tracking problems.
How did they sound, though? Pardon the pun, but not so hot. Subjective impressions took the form of either a h.f. peak for higher temperatures to a falling response for cooler ones. With most of the samples, the variation My curiosity aroused, I started to check all the other makes of cartridge I could get hold significantly temperature-conscious res
ponse curve. More surprising, the worst of all
were the moving coils with one popular were the moving coils with one popular
model, widely acclaimed in the hi-fi press, exhibiting a considerable variation in h.f. response with quite small fluctuations in
temperature. Again, at what one would temperature. Ag being a modest summer ambient accept as being a modest summer ambient
temperature, two versions of the same model refused to track satisfactorily at a little over
the manufacturer's maximum recommended stylus pressure.
It needs no imagination to see how one can
easily arrive at sharp disparity between what easily arrive at sharp disparity between what
one measures in the clinical coolness of a laboratory and what one actually hears in the warm comfort of a living room, or for that
matter why the same cartridge will sound matter, why the same cartridge will sound
inexplicably different one day compared with inexplicably different one day compared with
the next. I have looked at current published reviews in the popular hi-fi press and no-
where do I see any reference to ambient where do I see any reference to ambient
temperature at the time of measurement. teven more important, amplitude variations.
Even over typical ranges of working temperature
do not appear to be investigated at all. do not appear to be investigated at all.
Needless to say, the identity of the chief
ofenders is the concern of my client. But any Needless to say, the identity of the chief
offenders is the concern of my client. But any comments, pundit
Reg Williamson

Reg Willi Norwich

FINANCING NEW IDEAS Your editorial "Ideas for sale" in the Sep
tember issue touches closely a spare time activity of mine. I have been involved for many years in creating electronic products,
forming companies and either selling the products, the companies or both, or trying to products, the companies or both, or trying to
Raising capital for electronic product enter
prises or failing to prises or failing to raise it. Succeeding
failing, and even going into liquidation. I consider myself an expert on all th negative aspects of the above, all the pitfalls, the problems and what causes them. I am
getting a glimmering, after 28 years, of how to be an expert in the positive aspects.
My spare time activity is putting all this
Mperience and know-how into a book on the experience and know-how into a book on th
subject, a sort of guide to the young technical subject, a sor the future. I am not doing it for money; I do not expect to make a profit from
it. Taking this attitude I may well accidentally discover just one secret of success and actually make a profit, but it is not the motive. The motive is to try to help other
who should not have to go through such who should not have to go through such
negative financial climates as we have ex perienced in the UK for the past twenty years.
Your comment that to start with half the required capital could well be worse than
nothing is an understatement, it is a gold lated guarantee of total failur There are many case histories but one is a
good example of the whole British financia gooctor attitude. A small company had angood
potential, agreed by all. A British financial potential, agreed by all. A British financial source rated it first class but then only
wanted to put up half the figure calculated by wanted to put up hale the figure calculated by
the principals as necessary. The small company was persuaded to ogo to Holland and see
a Dutch source. The Dutch carefully Dutch source. The Dutch carefully
examined the project and agreed it was first class but insisted on putting twice the amount the principals had calculated. The
project was a success and the Dutch were right for the original calculation was well out, not by over estimating but by und out, not by
estimating.

UK technical promoters are pre
onditioned to ask for less than they need fo the fear that if they ask too much they will be curned down. The financiers then cut this gredient for small business suicide, as evident from the lists of companies going into liquidation.
I would
I would like to hear from any of your
readers who care to write to me with simple readers who care to write to me with simple
factual accounts of their experiences in this
field Not only the failure accounts but the field. Not only the failure accounts but the
successes as well - there must be some. With successes as well - there must be some. Whth
their permission I would like to edit their experiences into the book in order to offer a much broader view than just my personal H. E. Tracey

78 Broadwalk Court
Palace Garde
London W8

ELECTRICAL NOISE IN

 AUDIOWith reference to James Moir's article
"Electrical Noise in Audio Engineering" in "Electrical Noise in Audio Engineering" in
your August 1978 issue, Mr Moir is certainly correct in concluding that any signallto-
noise specification should be referenced to an noise specification should be referenced to an appropriate specification. Mr Moir, however,
unintentionally does a dis-service to the goal of bringing some order to the present chaotic situation by leaving the impression that there
are very few instruments available capable of are very few instruments available capable of
measuring noise with the CCIR $468-1$ weighting curve and the quasi-peak metering method of DIN 45 405. In addition to the two
instruments mentioned by Mr Moir, I have instruments mentioned by Mr
learned of the following others:
Radford ANM3 Audionoisemeter
Sennheiser UPM550 Universal Level Meter
Siemens U2004 Noise Measuring Set
Siemens U2133 Psophometer
In addition, there are older instruments no
In addition, there are older instruments no
longer manufactured which have used the
quasi-peak method with either the 468.1 quasi-peak method with either the $468-1$
weighting network or the older CCITT P.53 weighting network that are still in use or can be located from time to time:
Grundig MV5 Millivoltmeter and KM5
Filter/analyzer (CCITT P 53 weid Filter/analyzer (CCITT P.53 weighting)
Sennheiser RV55 Vacuum Tube Voltmeter Senne FO55 Weighting Filter (CCITT P.53
aneighting, modification kit for CCIR weighting, modification kit for CCIR
4688-1 weighting vaiable)
Siemen U2033 Psophometer (CCIR 468-1 468-1 weighting available)
Siemens U2033 Psophometer (CCIR 468-1 weighting)
Siemens U33 Psophometer (CCITT P.53 weighting)
Any reader knowing of other instruments with the quasi-peak capability is invite
advise this writer, c/o Wireless World. advise this writer, , 10 wireless World.
Dolby Laboratries makes a fairly persuasive case for their proposed CCIR $468-1$
weighted/average reading meter standard on the grounds that quasi-peak meters are not easily obtained. My personal view
remains remains, however, that such a new standard
is not needed and wider use of the existing is not needed and wider use of the existing
instruments would assist in creating additio-
nal demand for instruments with the quasinal demand for instruments with the quasi-
peak capability. Why create further confupeak capability. Why create further confu-
sion when an already adequate standard sion whe
exists? A. L. Henrichsen A.Llington
Virginia, USA

Mr Moir replies: My thanks for M

ment makers supplying meters meeting th-CCIR-468 requirements. When I noted the
names of the only two meters of which I have actual experience I expected that I would be inundated by literature from other manufacures drawing attention to their products but was disappointed.
I appreciate his I appreciate his comment on the CCIR
ARM weighting etc. Ido not know the price f most of the meters Mr Henrichsen lists, but the Dolby ARM 468 weighting adapter plus an
average responding meter scores heavily on average responding meter scores heavily on
price. If it is assumed that an average resonding meter is available and need not be purchased, and this must be true of every
laboratory, then the Dolby weighting net work costs around $E 150$ whereas a meter to the CCIR requirements costs around E800. It
is this aspect that makes me believe that we may end with two 'standards' with the nationalised bodies using the CCIR meter
and industry using meters meeting the Dolby and industr

SYNTHESIZED F.M

TRANSCEIVER
After several unsuccessful attempts to pro cure the three b.c.d. adders required in T. D. Forrester's frequency synthesiser
(November 1977), a brainwave revealed that two binary adders can be used instead. It works because the three intermediate
counter sections of the 4059 divide-by counter sections of the 4059 divide-by-N
counter can be preset to a binary 15 instead counter can be preset to a binary 15 instead
of a binary 9 , while their place values are still 1,10 and 100 . Careful analysis revealed that in this case there is never a carry from the 10 s
to the 100 s, so the third adder that only o the 100s, so the third adder that on
accommodates the carry can be omitted. The only snag is that the pin connections of the 4560 (b.c.c.).) and the 4008 (binary)
dders do not match. This means redesigning the board.
Michiel van der Vlist, PAoMMV/G5CGD

Mriebergen
 Driebergen Holland

K FOR KONFUSION

Reference your note to J. E. Chester's "Spel-
ling for technical jargon." (October letters) ling for technical jargon," (October letters), I cats. Your say, correctly, that the lower case
letter kstands for 1000 in SI units and then 0 on to say that the usper case K has been on to say that the upper case K has been
adopted for 1024. Has it? My SI units have it as degrees Kelvin and no matter how much
"adoption" the binary people make "adoption" the binary people make, one
should keep to SI units for all symbols large or small.
A const
or small.
A constant battle is with firms who pro-
duce instruments which duce instruments which measure resistance
and have ranges marked in degrees Kelvin and have ranges marked in degrees Kelvin
(e.g. 1000K); they think it is 1000 k ohms
(certainly not e.g. 1000 K); they think it
(certainly not $1024.10^{\circ} \mathrm{ohms}$). I hope that Wireless World will not com-
pound the felony of condoning $\mathrm{k}=1024$ when mentioning SI units in the same text.
John Freeman John Freem
SHAPE
Belgium

WIRELESS WORLD JANUABY 1979

A.M. BROADCAST RECEPTION With reference to Mr McLeod's letter in the November issue, on a.m. broadcast reception, I would like to point out that while I agreed with him on his points about a.m. reception, the word "reception" should be taken more into consideration. I am an electronics engineer and in a year I repair many hundreds of radio sets, television receivers, and cassette players, etc., all of different makes and places or origin. Mr McLeod goes on about transmission, but I feel the BBC and IBA do a great job on sound transmission. Unfortunately the British set manufacturers undo it all. again. Many times I've had a German tv set on the bench and a British set on at the same time, and the difference between the two on sound is unbelievable. British manufacturers seem bent on thinking the British public all have cloth ears. There is no, or very little, h.f. response on British television sets, while on German sets you can hear cymbals and all day and age with f.m. sound on television this should be no problem to achieve. But again getting back to radio, if you take a British radio (made in Japan, of course) and a German radio receiver of the same price, f.m. The British set is pathetic on sound reproduction. No l.f., no h.f., response at all on a.m. or f.m. So come on Britain, start designing better a.m. and f.m. detector stages and let the British public hear what a good job the BBC and IBA do of sending sound. They don't send out sub-standard sound, so why on earth do we have to listen to it? C. E. Linskaill Penicuik SPEAKERS CORNERED I refer to your leader in the April 1978 issue of Wireless World concerning the lack of comturers and reviewers. Historically loudspeaker manufacturers have been reluctant to provide a sample of their product - as you rightly say, the result of many hours and pounds of research - just to have it slated in result of which may or may ne the We are all aware of the sometimes ridiculous specifications issued by manufacturers, such as 'frequency response $30-20000 \mathrm{~Hz}^{\prime}$ with no reference to amplitude deviations within that bandwidth, and 'power handling 50 watts'. A single loudspeaker can be given a whether a sine wave, warbled tone, or pink noise is used, or whether the reading is in mean, continuous or peak music power. And of course, the power rating is totally meaningless if no indication of efficiency is given. Scientifically, the loudspeaker is complex - probably accounting for the proliferation of books, papers, articles and lectures on this subject. If one forgets transducer engineering, which covers magnetics, fluidics, elasticity and all the other fields of physics, to build a complete system involves three totally different sciences: the conversion of a	signal to the voice coil, electricity; the movement of the speaker cones, mechanics; and the movement of air, acoustics. Not only are these three different fields, but they are often in total conflict with one another. Added to this is the fact that the majority of speaker manufacturers in the British consumer field are cottage-industry systems consumer field are cottage-industry systems ducers over and over again, simply jiggling around with the box and crossover design. They only have to change the type of wood used for the enclosure and a couple of components in the crossover to get an entirely different subjective result, although the actual specification remains the same which one is correct? When an amplifier is evaluated, the measurements are displayed on meters, or pen recorders and are therefore absolute. When a television receiver is evaluated, there is an internationally accepted test card, so again the results are absolute. There is not and never has been a test card for loudspeakers. Dare I say it? If there were a meaningful set of parameters for speaker manufacturers to adhere to, the majority of them would be out of business. I have been involved in domestic loudspeakers, but my main field is in studio monitoring where a pair of speakers can cost around $£ 3000$. The specification may be impeccable, but may not sound correct to customers having a system installed in their particular environment. Spectrum analysis shows that the response is no longer flat - due to room reflections and absorption - the response more closely resembling a cross section through the Alps. This can easily be corrected with filters, but as is often the case, the resulting perfectly flat response sounds dull and uninteresting - and more to the point - the quality of the final recording suffers. Once again we are back to our original series of compromises. Studio monitoring is the most critical application any loudspeaker will have to endure, but if one way is acoustically correct and the other musically perfect - the latter is the reason why people buy loudspeakers and that is the one you settle for. Having contented oneself with these apparently conflicting facts, no matter whose loudspeaker you listen to - no matter how weird and wonderful his explanations are, he is bound by exactly the same laws of physics as any other manufacturer - and they are extremely stubborn and reluctant to change. Impulse response I can handle, as I can third harmonic distortion - but heaven know what in creation absurd terms like 'cardboardiness' and 'fluffiness' mean. One has no idea of the room acoustics in which the speaker is being evaluated, nor the source - of music. One review actually stated that they used BBC, Radio 3 transmissions. With the utmost respect to the BBC, who do put out some of the highest quality broadcast material in the world, under the best conditions, assuming that no GPO lines or tape recorders are used, you are lucky to get anything below 40 Hz or above 15 kHz out, of around 0.5%. Any engineer will tell you that those are perfectly acceptable specifications, but to value and subsequently slate a speaker with that source is rather like evaluout by the supplier of that information, using most commercial pressings as an alternative source is like doing the same evaluation with source is like doing the same evaluation with	Assuming near perfect sources e.g. liv broadcasts from p.c.m. transmissions, direc cut and specs, I would still hesitate to con demn any loudspeaker since that would inevitably involve my personal taste. One reviewer once printed an oscillogram of a sine wave of 50 Hz at 50 watts mean power. When I queried his reasons for doing specification stated 50 watts as the powe handling capability. True - but the fact tha the speaker handled that signal is academic or, to be more precise, is totally meaningless. A 50 W sine wave into a loudspeaker capable of producing 91 dB , with 1 watt at 1 metre, is equivalent to music at around 120 dBA if the energy spectrum is considered - not a very meaningful test for a bookshelf loudspeaker. To be fair to reviewers - I quote equal meaninglessness from the specification sheet of a well known manufacturer" This is accomplished by a unique form of horn process that converts the wavelength from inches into feet.' It is unlikely that manufacturers, reviewers and-most important of all users of loudspeakers will ever agree any more than music lovers will, and it is them after all that keep us all in business. S. J. Court Court Acoustics Ltd London NW6 RTTY "INTERFERENCE" Were other r.t.t.y. enthusiasts as stunned as I was to read Pat Hawker's comment: "A general appeal to r.t.t.y. enthusiasts is that they recognise the high interferencepotential of this mode and keep contacts reasonably short. . " (October issue)? In shocked amazement I read it again and again but could extract no other meaning than that which had numbed me at first sight. With the adoption of the 170 Hz shift standard, r.t.t.y. has a far smaller interference-potential than any telephony mode. Lest it be argued that r.t.t.y's 100% duty cycle is more troublesome than s.s.b., it out" whereas s.s.b. can not. Of course one often hears complaints from telephony users about the large number of r.t.t.y. stations that position themselves haphazardly about the bands, particularly on 80 metres, but these are commercials often using wide shift. R.t.t.y. users have long confined themselves to a narrow band, usually 20 kHz wide at the top end of the c.w. segments. I have yet to hear one operating outside these agreed segments. Complaints about telephony sta- tions, who abandon their "meadows" to invade our little "backyard plot", are frequently heard and well justified. The failure of the French move to secure "exclusive" r.t.t.y. allocations has little relevance. The facts are that we have "gentlemen's agreement" segments which r.t.t.y. operators stick to but some s.s.b. stations do not. I am opposed in any case to any pressure on any user of a permitted mode to "keep contacts reasonably short" as this will do little to encourage self training of the licensee in the use of the less common modes. D. A. Duff G3VYV, B. S. Smith G8IAT, and P. R. Chamberlain G4GQO Preston

Australian activity Amateur 432 MHz television transmis sions have been made from a Piper Cherokee light aircraft flying over Port Philip Bay near Melbourne by VK3ZTV
and VK3YLK and including 144 MHz and VK3YLK and includ
The number of amateur licences in Australia and New Zealand remains significantly higher, in terms of percentage of total population, than in the UK.
There are almost 9000 amateurs in AustThere are almost 9000 amateurs in Aust-
ralia and associated territories, of which over 5250 are "full" licences; 2600 "limited" teetnician licences, and over 1000 hold the recently introduced "novice" licences. There is a general
feeling, despite some initial criticisms of the examinations and administration of the novice permits, that these are proving both useful and successful. Few of the many problems being encountered with Australian Citizens Band opera-
tion (official licences for this now number over 150,000) are reflected in the far more responsible novice operation, and new facilities including a seg ment in the 28 MHz band and
operation are being introduced.

Russian satellite

RS-1 is up

THE FIRST Russian space satellite to carry an amateur radio transponder was launched on October 26, 1978 into a
circular orbit at a height of about 1050 circular orbit at a height of about 1050
miles (period 120.295 minutes) and an miles (period 120.295 minutes) and an
inclination of about 82.55°. The design input to the transponder is 145.8 to 145.9 MHz with the output between 29.3 to 29.4 MHz (although some reports sug gest the bandwidth is restricted to
29.36 to 29.4 MHz). A beacon transmit ter radiates on 29.4 MHz . The new satellite, designated RS-1, is stated to have its transponder switched off o

Vintage station?

For many years the Science Museum in For many years ton had a static exhibit in its telecommunications gallery showing a representative 10 -watt amateur "ex
perimental" station of the late 'twenties; however, the transmitter section appears to have disappeared from public view during one of the periodic re-arrangements. But now a complete pre-war station of the rack-and-panel Museum at Arreton Manor, Newport, Isle of Wight, alongside a modern, compact transceiver.
The museum has recently been granted the special call-sign GB3WM
and will operate on all h.f. bands and also on 144 MHz through the Hampshire repeater GB3SN. The operators will use both s.s.b. and c.w., as it has been found that the public today is showing being used. William Orr, W6SAI, has pin-pointed 1936 as a pivotal year in the develop-

ment of the modern amateur station, listing such developments as increased recognition of the role on ionospheric variations on long-distance communications: the growing use of stable variable frequency oscillators in lieu of beam-power tetrodes including the 6L6 and the 807 ; the coming of factory-made bandswitches, amateur-bands-only communications receivers such as the National NC101X. It would certainly be

g such advances

RSGB progress

Although pre Radio Society of Great Club of London) as early as 1913, it was around 50 years ago that, following the "fusion" between the main society and its own activist "Transmit and Relay"
section and under the presidencies of Captain Ian Fraser, G5SU (later Lord Fraser), and Gerald Marcuse, G2NM, during 1928 and 1929, its role became firmly concentrated on amateur radio with a membership little more than
1000. ${ }^{1000}$ The The latest annual report and accounts
of the society show a striking recovery from the financial problems which it faced a few years ago, in common with steep rise in the rate of inflation. During the year to June 30,1978 , it has achieved a record surplus of over $£ 50,000$; an all-time membership high of over 21,000 (some 2500 overseas); and a head-
quarters staff of more than 20 . During the year it recruited over 3000 new members, but some 1800 others withdrew.
drew.
In a sample survey of the use made by members of the various services, it was found that over 50 per cent of Class B
licensees use the v.h.f./u.h.f repeaters, compared with 36 per cent of Class A. Over 60 per cent of Class A licensees use the QSL Bureau, compared with about 40 per cent of
members holding Class B licences members holding Class B licences.
About 40 per cent listen to the GB2RS news bulletins but only about 10 per
cent attend conventions; 44 per cent of
"receiving" members make use of slow morse transmissions; dropping to
around 30 per cent for Class B and a surprisingly high 19 per cent for those who have already passed their Morse test and hold Class A licences. The Home Office has invited the society to send an official advisor (Roy
Stevens, G2BVN) with the UK delegation to WARC 1979 next September. Licences for 15 more v.h.f. repeater stations have recently been issued to the society.

BARTG and BATC news

printer Group has now published a prtractive new 32 -page third edition of their useful guide to r.t.t.y. without tears: "RTTY - the easy way." A new active lowpass filter and a simple
"autoprine" circuit are included for the first time and the presentation of diagrams alongside text has been improved by the editor, Brian Hodgson, G3YKB.
Over 1200 copies of the second edition over sold in two years. The new edition is available (90 p) from: Alan Butcher, G3FSN, 70 Hughenden Avenue, High Wycombe, Bucks. Over 400 enthusiasts attended the 1978 BARTG conventis at its new venue in Harpenden. Some 37
British stations using 145.3 MHz v.h.f./r.t.t.y. have been logged in a twomonth period by G8GOJ in Croydon. About 200 people attended the British Amateur Television Club convention in London at which one of the highspots
was a video recording of Australian ATV activities; another was a talk on digital video techniques by Ian Lever (IBA). A useful leaflet "All about NBTV" (narrow-bandwidth television)
is available from the chairman of the is available from the chairman of the
Narrow Bandwidth Television Association: D. B. Pitt, 1 Burnwood Drive, Wollaton, Nottingham (Tel: Nottingham
282896). Geoff Brown, GJ8ORH, is now 282896). Geoff Brown, GJ8ORH, is now active from Jersey on 432 MHz with
80-watt high-definition transmissions.

In brief

DKOTE is a new 28.2575 MHz beacon station located near Constance in West Germany There are 4325 licensed
radio amateurs in Norway . . . On the radio amateurs in Norway On the
occasion of the 50 th anniversary of the occasion of the 50 th anniversary of the
Norwegian society (NRRL) a challenge cup was presented for annual competition, as a result of an offer by King Olaf
V of Norway... Moonbounce (e-m-e) V of Norway \ldots. Moonbounce (e-m-e)
contacts on 144 and 432 MHz have been contacts on 144 and 432 by Yugoslavian amateur stations ... Moonbounce contacts are also reported between
UA3LBO and UR2BU, A French
amateur tv contact was made by F9UP amateur tv contact was made by F9UP
and F8MM over a distance exceeding and F8MM over a distance exceeding
400 km on 1255 MHz French amateurs F8DO and FICVJ have made contacts on 24 GHz over distances up to 16 km using MA49628 Gunn diodes with an output of about 10 mW

PAT HAWKER, G3VA

Electronic organ tone system

Filter circuits and stop cards
by A. D. Ryder, M.A., Ph. D., F.I.E.E.

This article completes the testing filter circuits which 2, and covers the printed circuit boards. A description of the stop cards concludes the design of
the basic system.

TO SET THE TRIMMER, as described at the end of part 2 , adjust for minimum of the $10 \mathrm{M} \Omega$ resistor is forced to 2.5 V (b) a temporary connection to the mid point of a $10 \mathrm{k}: 10 \mathrm{k} \Omega$ potential divide across the supply). The remaining components and wired connections are then nections to last. The gating is most conveniently checked with the filter cards connected because the collectors 22 and 23 show an assembled gate card.

Filter characteristic The principa harmonic of a square wave is the 3rd tal. After passing through a 12 dB octave filter, the 3rd harmonic is reduced to $-271 / 2 \mathrm{~dB}$ (a level exceeded y most organ pipes) and the higher minimise keying thump due to the do component of the gated signal it necessary to restrict the response below he lowest working requency f, a Fig. 24. To offset the 12dB/octave slopers input signal must increase wit requency, which requires that the gate nput resistors R_{n} decrease with teristic is shown in table 6. The power ncreases considerably at low frequen cies, as with most pipe organ stops, presumably to compensate for the fall ng sensitivt 65 of the ear. A constan he output-amplifier power. Th regulation, which may be varied by changing the grading of R_{n} values, may so be varied for individual harmonic sections after the filters.
The filter response of the circuit is within about ldB of Fig. 24 over the working range but, even with an exac would be expected from table 6 as R values are restricted to the E24 series.

Above about CK5, where R_{n} has fallen to a nominal $40 \mathrm{k} \Omega$, the divider output resistance ceases to be negligible, and have a non-unity mark to space ratio which somewhat reduces the fundamental content. The additional circuits up to GK6 have a constant value of $10 \mathrm{k} \Omega$ The input
provide a d.c. path for gate-collecto urrent, and is in effect a damped resonant circuit as shown in Fig. 25. To is used as shown at the left of Fig. 26 is used as shown at the left of Fig. ${ }^{26}$.
The capacitive element is C_{1}, and th inductive element, in this case about 100 H , is formed by $\mathrm{C}_{5}, \mathrm{R}_{4}, \mathrm{R}_{5}$, and the ransistor, which should be a high-gain increased, and adjusted by R_{8} which also holds the transistor in conduction Resonance occurs approximately when $R_{4} \cdot R_{5}=X_{1} \cdot X_{5}$, where X_{1}, X_{5} are the eactances of C_{1} and C_{5}. Because the do not contribute significantly to the damping.
The high-pass combination $\mathrm{C}_{2} \mathrm{R}_{2}$ provides an additional 6 dB /octave at low frequencies, and $\mathrm{C}_{3} \mathrm{R}_{3}$ provides the same forms the sine-wave bus, 741 output components to the left of the dotted line are duplicated for each of the two or three SQB sections, so that the signals Fig. 27 shows one method of don 741. the bias voltages.

Component values The component values are shown in Table 7. Although many different combinations are possible, the choice is limited by the
standard range of capacitor minimum R value of $10 \mathrm{k} \Omega$ is used and in most cases the lowest frequency, f_{k} of the H bus is that corresponding to CK33, where R_{n} at $12 \mathrm{~dB} /$ octave becomes ${ }^{6} 640 \mathrm{k} \Omega$. For L buses, f_{L} corresponds to CK1, but R_{n} generally differs from
$640 \mathrm{k} \Omega$ because of the requirements in table 6. If R_{b} is the input resistance to produce 100 mV at the filter output, then $R_{n}=100 R_{b} /$ required mV out. The R_{b} design value of $640 \mathrm{k} \Omega$ is also increased for the lower buses to reduce the variet R_{n} values.
The fundamental component of the square-wave divider output has an amplitude of approximately 2.25 V r.m.s. and, if the load consists of C_{1} alone, the fundamental is $2.25 X_{1} / R_{n}$. This is almost
exact at frequencies well above f exact at frequencies well above f, and
here the second-stage gain becomes almost equal to X_{3} / R_{2} so that the filter output is $2.25 X_{1} . X_{3} / R_{n} . R_{2}$ However, if the response of Fig. 24 has been achieved, this expression will apply at all frequencies from f upwards.
The value of C_{1} is chosen to limit the voltage swing at the h.f. end of the range. Capacitor C_{3} is chosen for a
reactance close to $470 \mathrm{k} \Omega$ at f_{L}, and R_{3} is made equal to this reactance so that the second-stage gain at f_{L} is 3 dB down on X_{3} / R_{2}. The value of R_{2} is given by the expression above, for each SQB, and C_{2}

Fig. 22. Assembled gate card.

Fig. 23. Assembled gate card viewed from copper side. Current p.c.bs have a
slightly slightly modified input layout.
onwards is 6 dB down on X_{3} / R_{2} at f, i.e. $f_{\mathrm{L}} f_{\mathrm{M}}$ or f_{H}. To restore the overall gain, the resonant action of the input stage increases its output voltage by 6 dB on
$2.25 X_{1} / R_{n}$. These proportions give a . $25 X_{1} / R_{n}$. These proportions give a
reasonable match between the slope of the resonance curve near to f and that of $\mathrm{R}_{2} \mathrm{C}_{2}, \mathrm{R}_{3} \mathrm{C}_{3}$. The choice of R_{4} and R_{5} is an uncritical compromise between damping and mean voltage swing at the SQB. The values are related to X_{1}, X_{5} as
already noted, and R_{5} can be adjusted to use a standard value for C_{5}. This analysis permits component values to be calculated within 10%, except for R_{6} which is found by trial, starting with a capacitors and 2% resistors minimises the need for adjustment on test, but is not essential.
Filter test and adjustment A test Fircuit is shown in Fig. 28 which A test isolated gate. The inputs at f and $4 f$ can be taken from gate-card divider outputs as listed in the test columns of table 7, or from any stable source at the correct frequency and voltage levels (see pregate card). The mV column shows the expected SNB r.m.s. output, which is the same at both frequencies because of the $16: 1$ resistor ratio, although it exexceeds $640 \mathrm{k} \Omega$.
The waveform should be monitored to see that it is a sine wave, and that the est layout is not picking up excessive varied if required, keeping to the $16: 1$ ratio, for more convenient output levels. The output can be checked at other SRequencies within the range of the SQB. For a given input resistor, an output change, and half an octave should cause a $2: 1$ change. Deviations of 1 dB can be considered negligible. Adjustment consists of setting R_{2} for
the hf gain the h.f. gain, R_{5} for the peak response
frequency, and R_{6} for the damping frequency, and R_{6} for the damping. particular SNB from table 6 could be catered for in later mixing, the R_{2} adjustment is needed to equalize the SQB
sections. This is made first at $4 f$, then R, is adjusted for maximum output at f.

Fig. 26. One filter section. The values shown are for $1 U L$ where $f=32.7 \mathrm{~Hz}$
his applies to each SQB section with respect to its operating frequency f

Fig. 25. Equivalent circuit of the first filter stage.

Table 7. Filter card component values.

Bus	Hz		$\begin{aligned} & c_{1} \\ & \mathrm{nF} \end{aligned}$	$\begin{aligned} & \mathbf{R}_{\mathrm{E}} \\ & \mathrm{~K} \Omega \end{aligned}$		$\begin{aligned} & \hline c_{5} \\ & \mathrm{nF} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{5} \\ & \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathbf{R}_{2} \\ & \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{2} \\ & \mathrm{nF} \end{aligned}$		$\begin{aligned} & \mathrm{C}_{3} \end{aligned}$	$\begin{aligned} & R_{3} \\ & \mathrm{k} \Omega \end{aligned}$				
1UL	33	14	220	91	1.8	220	270	147	100					C	01,0	800
1UM	M 65	15	100	82	1.8	100	330	51	33		10	470	5	c	02, 08	400
1UH	131	16	100	43	1.8	47	200	51	15						04, 16	100
2UL	65	19	100	82	1.8	100	330	100	22						02,	
2 UH	H 262	20	100	22	1.0	15	240	27	15		4.7	510	6	c	08, 32	100
4UL	131	25	100	47	1.8	47	180	120	10					C	04, 16	200
4UH	41	26	47	22	1.0	33	100	27	10		2.2	56	8	${ }^{\text {G }}$	08, 32	160
8UL	262	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	$\begin{gathered} 100 \\ 22 \end{gathered}$	56	1.8	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{array}{r} 150 \\ 82 \end{array}$	$\begin{aligned} & 82 \\ & 24 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 4.7 \end{aligned}$		1.5	390	9		$08,32$	2100
5 L	164	37	100	39	1.8	33	160	110	10							
5 UH	654	38	47	33	1.0	15	91	27	4.7		1.5	620		c	20,	100
$\begin{aligned} & 3 U L \\ & 3 U H \end{aligned}$	$\begin{array}{r} 98 \\ 392 \end{array}$	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	$\begin{gathered} 150 \\ 68 \end{gathered}$	$\begin{aligned} & 33 \\ & 22 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.0 \end{aligned}$	${ }_{33}^{68}$	$\begin{array}{r} 160 \\ 82 \end{array}$	$\begin{aligned} & 91 \\ & 24 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$		3.3	470	11	$\begin{aligned} & c \\ & c \end{aligned}$	$\begin{aligned} & 03,12 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned} 200$
6UL	196	49	150	82	1.8	22	120	100	6.8					c	06, 24	
6UH	784	50	33	22	1.0	15	91	30	4.7					c	24,96	100
1SL	65	14	100	82	1.8	100	330	100	22							
1SM	208	15	150	27	1.8	15	180	33	15		4	510	5	G^{\prime}	04, 16	
15H	523	16	100	22	1.0	10	100	22	6.8						16, 6	
$\begin{aligned} & 2 \mathrm{SL} \mathrm{~L} \\ & 2 \mathrm{SH} \end{aligned}$	131 415	+19	100 47	47 22	1.8	47	200	120	10		2.2	560	6	c	04, 16	
4SL	262	25	100	56	1.8	15	150									
4SH	1047	26	22	22	1.0	15	82	24	4.7		. 5	390	8	${ }_{c}^{c}$	$32,12$	$\begin{aligned} & 2100 \\ & 28100 \end{aligned}$
8SL	523	31	47	47	1.8	10	130	91	3.3							
8SH	2093	32	15	16	1.0	4.7	91.	18	3.3					c	64, 25	56100
5 SL	327	37	100	56	1.8	10	150	75	6.8					c		
5 SH	1308	38	22	20	1.0	6.8	110	22	3.3		. 0			c	40, 1	60100
3SL	196	43	150	82	'1.8	22	120	100	6.8			560	11	c	06, 2	
3SH.	784	44	33	22	1.0	15	91	30	4.7					c	24,9	100
6SL	392	49	68	47	1.8	10	150	110								
6SH	1568	50	15	20	1.0	6.8	110	33	2.2						48,19	2100
Spare		$\begin{aligned} & 55 \\ & 56 \end{aligned}$											$\begin{aligned} & 13+ \\ & 13+ \end{aligned}$	$\begin{aligned} & +10 \mathrm{~V} \\ & +6 \mathrm{l} \end{aligned}$	$\begin{aligned} & \text { pin } 3 \\ & \text { pin } 4 \end{aligned}$	

Fig. 27. Filter bias voltages. The resistors are common to all three cards and are mounted separately. C represents one capacitor on each filter card.

and R_{6} is set to equalize this with the $4 f$ level. A major change of R_{6} will
necessitate a further adjustment of R_{5} If components of a wider tolerance are used, it may be necessary to tailor R_{3}, and to equalize the SQB at a different Asty
Assembly The component layout is shown in Fig. 29. Filter capacitor centres are all 0.4 in so capacitors with a 0.3in lead spacing are opened out.
Components should not project more than 10 mm from the board surface, and leads not more than $21 / 2 \mathrm{~mm}$ from the underside. Fig. 30 shows an assembled filter card.
A suitable framework is needed to support and locate the cards. Fig. 31 shows the centres used in the prototype to accommodate the 19 cards of the basic system, plus a spare card position
in an overall width of 17 in summarised in table 8. Actual distances

between card faces are 1.6 mm less than the centres.
The bus wiring at the rear of the rack, heavier gauge is desirable for the supply connections and, as shown, the +12 V and ground lines each connect to two adjacent positions. The SQB wires are
connected to every gate card, and sleeving is needed where the U SQB runs behind connectors SF and SM. The 12 reference connections, and the vibrato connection if used, can be in 33 s.w.g., and in the prototype these were
routed through small wire loops attached at the upper fixing point of each connector.

Fig. 29. Filter card EO2 layout showing the components for harmonics 1 and 2 pattern of 2 in the seguence $1,2,4,8,5$. 3, 6. The lowest set of tracks is a spare

Fig. 30. Assembled filter card and track layout. Since the photograph was slightly to relocate the large capacitor

Gate-card testing To check the gate cards, tested filter cards should be in place. Fig. 33 shows an adjustable values for amplitude control as referred to in the previous article. The $10 \mathrm{k} \Omega$ resistor provides protection for testing but without it the output resistance is once. The mean base current of a gate is small, and the $100 \mathrm{k} \Omega$ pull-down resistor provides the main d.c. load at the K input. Therefore, the drop across the Apart from keying faults, major depar tures from table 6 , with the keying inpu at 5.6 V , may be caused by incorrect R_{n}

Stop cards The circuits and physical onstruction so far described are largel interdependent. Subsequent circuitr and additions can be designed in many ways, according to the constructor's preference. To complete the present
section, Fig. 34 shows a d.c section, Fig. 34 shows a d.c. coupled
circuit for the stop cards, SM, TM, and M. The R_{m} resistors can be arranged in a square two-way matrix. Mixing of harmonics takes place at the virtual earth input of the amplifier. The 10 k § across the 4016 switches and define the charge on series capacitors where used, but care should also be taken in the layout to minimise shunting capacitance. In this configuration, with an distortion in the switches is negligible. A shunt-muting circuit, which may be used to suppress earlier noise and rsidual breakthrough, is shown in Fig

71

\rightarrow (t-2/2 max. projection of screwheads etc. inside sideplates.

Fig. 31. Recommended card spacing in m. This is a rear view with the component side of the cards to the right. S, T and U are swell, great and
pedal, F is the filter card M in pedal, F is the filter card, M is the sto
card

Fig. 32. Bus wiring viewed onto the onnector pins. MO and the spare card boxes rere to the right. The square boxes represent the polarising key.

Fig. 33. Keying voltage source. The resistor in the KC line is for test
purposes only. purposes only.

Alphanumeric keyboard

An inexpensive, easily-made device, using a novel method to produce an ISO-7 code.
by D. E. O'N. Waddington, F.I.E.R.E.

The most comfortable way to "talk" to a computer or microprocessor is via a alphanumeric character set. This articl alphanumeric character set. This
describes the construction of an inexpensive keyboard together with circuit which encodes the key-strokes into an ISO 7 -bit coding
WE ARE ALL familiar with the standard typewriter QWERTI key board. Most of us, unthinkingly, assume that this layout of keys has been chosen
for good ergonomic reasons. Motion for good ergonomic reasons. Motion
study would seem to give this the lie the middle finger of the left hand is not the best choice for operating the most used key in the majority of European languages. It has been suggested that the word "typewriter" was thinly dis
guised in one line of keys so that semi skilled salesmen could demonstrate the machine more easily. The true reason is lost in the mists of time, but in designing a keyboard for home use, there is no
reason why this layout should be fol lowed slavishly. Most of us seldom use a typewriter and an alternative pattern of keys, if there are good electrical or mechanical reasons, is acceptable. In addition to the 64 printing cha-
racters, the standard teletype includes racters, the standard teletype includes
32 non-printing characters, known as control characters. While it is not es-

Fig. 2. Arrangement of keys.
Fig. 3. Two-transistor switching to
allow a single switch allow a single switch to drive columns
and rows. and rows.

Fig. 1. Binary and octal representation of ISO7 character set. The columns are read first, followed by the rows. For
example " 8 " is represented by 070 in octal, or 0111000 in binary; " K " is 113 , or 1001011.

sential to have these it is a good idea to include them in a keyboard so that it is compatible with standard equipment The octal representation of the cha pattern which suggests that som simple form of encoding could be used For example, two eight-input priority ncoders could be used to give direc encoding of 64 cross-point switches, a the story with the other 32 switches. This would be rather cumbersome, so an alternative of using 32 switches with a 3 -level shift - control, punctuation extra keys - carriage return 01 (0001101) for end of message, and "rubout" 177 (1111111) are included to facilitate connexion to the processor he final arrangement of keys is show

Circuit
To conserve power, the circuit was designed to use mainly c.m.o.s., should not be implemented in t.t.l. The vital component is the encoder, RCA type 4532. When any of the inputs is connected to a logical 1 , the three outthe highest line (numerically) taken to logical 1. Thus, taking line 6 high results in the output 110. Additionally, an output line is provided to verify that an input is present.
encoders positive by means of a simple cross-point switch, a transistor inverter is used, as in Fig. 3. When S_{a} is open the row input is at 0 V and the transistor $\mathrm{Tr}_{\text {r}}$ is switched off, so that the column
encoder input is also at 0 V . When the switch is closed, Tr_{1} is bottomed, taking the column encoder input positive. As the base/emitter voltage is only 0.6 V , the row encoder input is also positive
"Shif"" is accomplished by means of S which allows either Tr_{1} or Tr_{2} or to
conduct. In the complete circuit of Fig. Fig. 4. Complete circuit diagram. 4, the shift switch uses an RS flip-flop to "control" switch overrides this latch temporarily. The "end of message" switch generates 015 via two diodes
while "rub out" actuates both 7 lines. Fig. 5. Base-board layout.

Fig. 6. Pattern of masking tape.

Fig. 7. Upper switch contacts.

Key switches
witches tend to constitute the main位 ion. However, it is possible to construct a simple and reliable keyboard very cheaply using aluminium foil and ad hesive tape. T
are as follows:

- Cut̄ a base board $120 \times 200 \mathrm{~mm}$ from suitably strong insulating materia such as 3 mm perspex, as shown in Fig. 5 .
Cut 1 lcm wide strips of aluminium as shown taking care to keep the upper surface free from glue.
Fig. 8. Sketch of keyboard
onstur
Key bounce is a perennial problem with mechanical switches. In this circuit it is overcome by the provision of "data valid" bit which goes to 1 after the data has settled. It is derived as from the column encoder is used to nable the two encoder. Its input present line, in turn, delayed by $100 \mu \mathrm{~s}$ in a C R before being fed to the output via a gate. The i.e.d. is connected to each easily be monitored.

Components Because of the digital nature of the
circuit and c.m.o.s., the component values are not at all critical so that wide tolerance iN4148. The transistors used in the prototype were BCY72, but almost any silicon p.n.p., e.g. OC200, 2N3702, BC 308, etc., may be used. The circuit is designed to run from a single 5 V supply, which should be bypassed by a capaci-

US mobile radio market growth
AN international market research report*

published recently says that the US mobile adio equipment market will double over the next decade. In 1977 the market figure was $\$ 900$ million (down $\$ 500$ million from the 196 figure) but it is expected to expand | $\$ 2,500$ |
| :--- |
| $\$ 1980$ |

Although declines in citizen's band radio slow growth during 1980 the report say that the market will recover to attain an 8% nnual compound growth rate thereafte. actors which wir undoubtedyy affect the of digital messages, the widespread use of oice scramble devices and the emergence of consumer f.m. scanner market. Other fac ystems (especially on the newly opened 80 o 900 MHz band) and of course the micro The rep
report examined equipment in the sudy under the categories, public safety
services, industrial radio services and lan rransportation services, and gave growth services within these categories (fire, police taxicab, etc). From the figures given to (in \%1 year) for the periods $1976-80$ and 1980 85 , one sees an overall drop from 15 to 10% respectively for the total land mobile mark with these drops being fairly evenly spread
over almost all of the services. The more noticeable changes are in the fire service (u 5%), the police service (down almost 50%, nd the railways (up about 30%) countered in the mobile radio market requency spectrum congestion, foreign competition and government regulations, to
name but a few - the US participants, according to Frost \& Sullivan Inc., wh produced the report, will be especiali plagued by price pressures as many more
manufacturers and suppliers participate in the market".
The average unit price of land-mobil radios is expected to reduce from its 1976
figure of $\$ 850$ to $\$ 700$ in 1985. With c.b. radios the story is very different.
The forecast predicts that they will pene The forecast predicts that they will pene
trate deeper into the vehicle market than th current 9% for automobiles, 60% for long haul trucks, and 5% for small trucks. The study also points out that the microprocesso
and other 1.s.i. circuits are being used mor and more in c.b. radios. The Mobile Radio Market, reference 556 , by

Oscilloscope waveform store

by R. H. Fastner

During the time it took to develop this instrument and prepare the article,
Motorola stopped production of the MC1407, used as controller for the analogue-to-digital converter in Fig. 3 of the article in the October issue. The following modifications will function as changes to the p.c. board.
Comparison, formerly the function of ${ }^{\text {I }}{ }_{1}{ }_{1}$ (b), is performed by an NE529 or the ' k ' package version of the NE527: a
possible alternative is the LM361 ' h ' possible alternative is the LM361 ' h '
package. All these are 10-lead metal-can types and should be used with a "MON-10LN" pad. An NE531 will replace the amplifier section of the original IC_{1}. The capacitor C_{4} should be removed from the board. A new capaci-
tor of 20 pF should be inserted on the new, small board, shown in the accompanying illustrations, which can be plugged into an i.c. socket in the original IC_{1} position.
The power supply circuit shown is suitable for the instrument.

Fig. 3. The new board. The NE531 is an 8-pin d.i.l. version in this prototype.

Fig. 1. Alternative circuit for the a-d controller ($\left(\dot{C}_{1}\right)$.

Fig. 2. Printed-circuit board for the circuit of Fig. 1. Board will fit into original IC ${ }_{1}$ position. NE531 is on right.

Fig. 4. New board plugged into original MC1407 position.

The Chatterbox - 2

Circuit details, construction and use
by Ian H. Witten M.A. Ph.D. M.I.E.E. and Peter H. C. Madams, B.Sc., M.Sc

Last month's article discussed the processes of electronic speech synthesis and outlined the general design principles of the Chatterbox, giving a now conclude with further description of the circuitry, notes on construction and advice on how to operate the synthesizer

Noise generator. The digital feedback shift register, which is used as the noise source for the Chatterbox, is shown in Fig. 13(a). The final output from the register is exclusive-ORed with an intermediate output, and fed back to the
beginning. Because it has only a finite number of states, this configuration will generate a repeating - and hence non random - string of bits: however, if the intermediate feedback point and the carefully chosen, a maximal-length sequence of $2^{N}-1$ bits is obtained before repetition begins. We chose the 4006 c.m.o.s. 18 -bit shift register chip to implement the generator because some Fig. 13(b)) and it is much cheaper per bit than full parallel-output registers.
Arranging 4006 chips into a low-cost maximal-length feedback shift register presents some problems. The clock rate white noise. Clocked at this rate, a 16-bit maximal-length register repeats every three seconds or so, and this repetition in the noise is unfortunately just noticeable. Although 17 -bit and
18-bit maximal-length registers do exist, it is just not possible to configure the several small shift registers of the 4006 in a way which makes the appropriate bit accessible. However, a computer register with feedback from stage 17 , although not maximal length, produces 253921 bits before repeating the cycle This is only slightly less than $2^{18}-1$ (262143), and so the sequence generated the 22.5 kHz clock that is used, the sequence repeats every 11 seconds. It is important to start a feedback shift register in the correct state. For example, the one in Fig. 13(a) will cer-
tainly not produce noise if started with each stage containing zero, since the feedback bit will be zero also. Unfortunately, when power is turned on the cmos, shift register that we used in-

Fig. 13. (a) N-bit exclusive-OR feedback shift register; (b) shift registers in the .m.o.s. 4006 i.c.

Fig. 15. Distortion of vowel positions due to square root law of filter resonances.
variably comes up in the all-zeros Hence a spare gate is placed in the feedback path acting as an inverter, so that the all-ones state is the one which cycles indefinitely without producing noise. The all-zeros state leads into the repetition sequence of 253921 cycles.

Formant filters. The formant filters form the heart of an analogue speech synthesizer like the Chatterbox. They should be constant-bandwidth, constant d.c. gain, second-order resonators with centre frequency controllable over
approximately half a decade range. In order to keep the cost of the device low, we used the two operational amplifier active filter configuration of Fig. 14 instead of the more commmon ring-of-

Fig. 14. Formant filter.
rather easier to control. The transfer/ function of this can be shown to be

$$
H(s)=\frac{-1 / C_{1} R_{1} C_{2} R_{2}}{s^{2}+\frac{1}{C_{2} R_{2}} s+\frac{1}{C_{1} R_{1} C_{2} R_{2}}}
$$

which characterizes it as a low-pass resonance with d.c. gain of $R_{1}{ }^{\prime} / R_{1}$, bandwidth of $1 / 2 \pi \mathrm{C}_{2} \mathrm{R}_{2} \mathrm{~Hz}$, and centre frequency of R_{1}^{\prime} with R_{1}, we can ensure that
d.c. gain remains constant, and the centre frequency follows $1 / \sqrt{ } R_{1}$. to slight departures from exact tracking of R_{1} with R_{1}.
The inverse square root variation of
formant frequency with R_{1} caused us formant frequency with R_{1} caused us
some concern. It is important to ensure that the joystick has an audible effect on the sound quality right across its operating range, so that con
concentrated in one corner.
Suppose we let k travel from 0 to 1 to represent the position of the joystick in one dimension. The potentiometer is linear; suppose its resistance swings from R_{A} to R_{B}. Then at position k, the
resistance is $R=(1-k) R_{\mathrm{A}}+k R_{\mathrm{B}}$, and the frequency of the resonance is proportional to $1 \sqrt{ } R$. It is easy to show from this that if the resonant frequency avels from f_{0} to f_{1}, its value at position k is

$$
\frac{f_{0}}{1-k .\left[1-\left(f_{0} / f_{1}\right)^{2}\right]}
$$

Now we can plot the positions of the vowels on a two-dimensional plane, degrees of freedom of the joystick. Fig. 15 shows a comparison between the vowel positions for a hypothetical linearly controlled filter $(f \sim 1 /(k+$
const) $)$ - the vowels are labelled in the const)) - the vowels are labelled in the
positions they would occupy for this and the filter we are proposing. The distortion due to the square-root law is shown by arrows. The diagram is obtained using standard formant
frequencies for a male voice, and ranges

Fig. 16. Sibilance filter
of $200-750 \mathrm{~Hz}$ and $750-2250 \mathrm{~Hz}$ for for mants 1 and 2 respectively. The effect of the transformation is to the ple vowels towards one corner of distinguishing bis disadvantageous distinguishing between vowels would clearly be easier if they were maximally
separated. However, the crowding is not severe, and the simplicity of the two-amplifier filter compared with others having more suitable relationships between resonant frequency and
potentiometer position was considered to outweigh the disadvantage of uneven vowel distribution.
The bandwidths of the formant filters must be chosen carefully. Published figures for formant bandwidths are sur-
prisingly low - around 50 to 100 Hz However, low bandwidth gives a high magnification factor Q, especially in formant 2 where the resonant frequen-

Fig. 17. Inside the Chatterbox.

WIRELESS WORLD, JANUARY 1979 cies are higher, and since the gain in the first stage of the filter depends on Q, this is undesirable, because limiting wil occur unless the signal levels are ex tremely low. In practice, we have found speech does not depend critically on low formant bandwidths, and we chose to make the first formant bandwidth 110 Hz and increase the second forman bandwidth slightly to 160 Hz
The component values used in the prototype Chatterbox are shown in which spans slightly lower frequencies than required by the vowels of Table 1, and a formant 2 range which is rather higher than that required. This is because if the formant ranges intersect, or come close to intersection, the com-
bined amplification of both filters can cause limiting to occur in the second filter. The problem cannot be avoided simply by turning down gains, for then the amplification when the formant
frequencies are separated is so small fhat the signal gets lost.

Sibilance filter. To make the sibilant sounds "ss," "f" and "sh," the signal generated by the noise source must be
filtered and attenuated. A second-order high-pass resonance is an appropriate filter, with the position of the resonance determining the type of sibilance. It is necessary also to make " " " a much
weaker sound than the other two, so we sought a filter where we could change the attenuation at the same time as controlling the resonant frequency. The circuit of Fig. 16 does nicely. Capacitor

Table 2. Component values for the formant filters			Table 3. Component values for the sibilance filter			
	Formant 1	Formant 2		s		sh
$\mathrm{R}_{1}, \mathrm{R}_{1}^{\prime} \quad 10$	OK2 linear potentiometer	$10 \mathrm{k} / \mathrm{linear}$ potentiometer	R_{A}	220	220	${ }_{2}^{220}$
	series with $1.2 \mathrm{k} / 2$	in series with 1.2 K \%	R_{B}		22	22
C_{1} R_{2}	47 kg	15kO.	R,	1 k		1 k ,
C_{2}	100 nF	68 nF	${ }_{\text {cher }}$	820 k ת	820k Ω	820kR
calculated bandwidth	h 110 Hz	160 Hz	R_{2}	1000pF	1000pF	1000pF
calculated range of			calculated gain	1/10	1/10	1/10
resonant frequencies	$180 \mathrm{~Hz}-550 \mathrm{~Hz}$	$940 \mathrm{~Hz}-2850 \mathrm{~Hz}$	calculated bandwidth	390 Hz	280 Hz	
range required by vowels of Table	300 Hz -750Hz	$750 \mathrm{~Hz}-2250 \mathrm{~Hz}$	caiculated resonant frequency	5560 Hz	3750 Hz	2130 Hz

C_{1} controls the resonant frequency, and input to ground. In fact, the conduct R_{A} / R_{B} controls the attenuation. The transfer function is
input to ground. In fact, the conduct Although the values shown work for

$H(s)=\frac{s^{2}}{\left(1+\frac{R_{A}}{R_{\mathrm{B}}}+\frac{R_{\mathrm{A}}}{R_{2}}\right) s^{2}+\left[\left(1+\frac{R_{\mathrm{A}}}{R_{\mathrm{B}}}\right) \cdot \frac{1}{R_{2}} \cdot\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)+\frac{R_{\mathrm{A}}}{R_{1} C_{2} R_{2}}\right] s+\frac{1+R_{\mathrm{A}} / R_{\mathrm{B}}}{R_{1} C_{1} R_{2} C_{2}}}$,

and if we choose $R_{\mathrm{B}} \ll R_{\mathrm{A}}, R_{\mathrm{B}} \ll R_{\mathrm{R}}$ 2
$R_{\mathrm{B}} \ll R_{\text {, }}$, and $R_{\mathrm{B}} \ll R_{R} \mathrm{C}_{2} / \mathrm{C}_{1}$, this has passband gain of R_{B} / R_{A}, bandwidth of $\left(C_{1}+C_{2}\right) / 2 \pi R_{2} \mathrm{C}_{1} \mathrm{C}_{2}$, and centre frequency of $1 / 2 \pi V / C_{1} R_{1} C_{2} R_{2}$. frequency and bandwidth to find suitable sibilant sounds. We finally settled on resonances at around 2100 Hz for
"sh," 3700 Hz for " f " and 5600 Hz for "ss," "sh," 3700 Hz for " f " and 5600 Hz for "ss," with fairly high Qs - compared to the
resonant frequencies - bandwidths of 200 to 400 Hz . These are on the verge of what is realizable with the circuit before capacitor values become ridiculously small and resistor values ridiculously high. Table
values used.
The different sibilances are obtained by switching different $\mathrm{R}_{\mathrm{A}}, R_{B}$, and C_{1} networks into the input of the filter. A 4016 c.m.o.s. analogue gate is employed
just before C_{1}, controlled by the approjust before C_{1}, controlled by the appro-
priate noise touch switch, and the other side of C_{1} in each of the three networks is commoned into the remainder of the filter. Fig. 12 shows the details of control. Because of the low input impedoutput from the noise generator is buffered with a unity-gain amplifier stage. Touch switches. There are five touch switches on the Chatterbox, for voicing, aspiration, and three sibilant sounds, S, F , and SH. The voicing switch, which is grasps the joystick, is replicated on both sides of the box to cater for left- and right-handed people.
The touch switches operate by detect-
ing the skin resistance when two ading the skin resistance when two adThey are made possible by the extremely high input impedance of c.m.o.s. gates. Since only a tiny current is drawn by the gate, an extremely high pull-up resistance $(10 \mathrm{M} \Omega)$ can be used
to keep its input asserted. Then even a high skin resistance is able to overcome the pull-up resistor and bring the gate
most people, if the touch-switches fail to work for you just moisten the skin a The whisper and sibilant controls are "ORed" together and the result turn ff the clock that drives the nois enerator, so that if none of them is operated, no noise gets through to dis-

Construction

The prototype model was made in a box $19 \mathrm{~cm} \times 11 \mathrm{~cm} \times 6 \mathrm{~cm}$, with the joystick ouch controls, and a small loudspeake on the top, and the pitch potentiometer
control protruding from the left-hand side. Fig. 17 shows the inside of the box A single printed circuit board, mounted on the base, contains all the com ponents. This is joined to the controls batteries provide an internal power supply, with provision for connection to an external one via a socket. An mplifier/recorder jack output is als included.
The left-to-right motion of the joysick controls formant 2 , from minimum left) to maximum (right), and the
down-and-up motion controls formant

Fig. 18. Approximate vowel positions

Fig. 18. Approximate vowel positions

1, from minimum (down) to maximum (up). It is important to keep the lead
from the joystick potentiometer a short as possible, since any noise on them will be amplified by the filters.
Setting up. The component values given in Fig. 12 should provide acceptable ranges and bandwiths for the tormant
filters, the sibilance filter, and the sound source. However, it is necessary to adjust the relative levels of the voicing aspiration and sibilance channel suitable choice of resistor values.
First, adjust the levels of voicing and aspiration by substituting different values for the $47 \mathrm{k} \Omega$ and $82 \mathrm{k} \Omega$ resistors a the input to the first operationa amplifier. It is best to examine the out
put of the amplifiers with an oscilloscope, so that as large a gain as possible is obtained without clipping occurring anywhere along the forman chain. The tests should be made a cause this radically affects the Qs of the filters.
Then adjust the two input resistors to the final operational amplifier to achieve a pleasing balance between sibilance and voicing. Finally, set the duce maximum output voltage withou clipping in the audio amplifier
Making the Chatterbox talk
The best way to learn about the Chatterbox is to play with it. However, people sometimes have difficulty get ting started, so here are some suggescontrols and their effects.
First, identify the vowel positions (Fig. 18). Remember that there are fa more vowels in English speech a, e, i, o, and u of English writing! tions while a steady vowel is being produced. Try a rising pitch, a falling pitch, a rise and then a fall, and a fa followed by a rise. Correct con speech sound natural.
Try some diphthongs next, as in "go," "toy," and "play" (Fig. 19). These ar made up as a slide from one vow position to another.
Finally, turn to the noisy sounds. On pair of touch contacts produces aspiraon, and the sound is affected by the oystick position. You should be able

use it to whisper the vowels and
diphthongs learned above. The other pairs of contacts produce the sounds a the beginning of "ships," "fish," and "salt." It is possible to make "t" as in However, it's quite difficult to integrate these noises with the vowel-like sounds to get proper words like "delicious." No wonder babies take so long to learn to
talk! Fig. 20 shows some thing s

The Chatterbox in use

The Chatterbox has found an exciting application as a stumulus for retarded and autistic children. (It has also been used with a young child, blind from
birth.) As you may know, such children find it difficult to interact with other people and often prefer to play with machines. The Chatterbox with its relatively rich structure of controls and
noises, proves an interesting devic noises,
Dorinda Bath, at the University of Nottingham, has conducted some ex periments with retarded and autistic children who were functioning at a were given the toy and instructed to "play with it and see what it does" While playing with the pitch potentiometer, trying to balance the toy on its joystick, chewing it, and so on, they switches by accident. From then on it was a matter of discovering which of the controls worked by themselves and which operated in consort with others. level l: making a noise by touching on of the controls; level II: performing two related actions

Fig. 20. Things to say
simultaneously (e.g. voice switch and joystick); level III: performing three actions simultaneously i.e. voice switch, joyM, and pitch pentiometer) Many of the children discovered by themselves not only level il but also
level III activity. However, because the possibilities for co-ordinated control at level III usually outstripped the child's manipulative powers, because her
hands were so small, she often involved the adult experimenter on her own in itiative to help her ("you touch these buttons while I move this"). Thus the Chatterbox served as a catalyst for valuable interpersont for the . This istic child, who withdraws from contact with humanity and does not respond to friendly advances from other people. with the Cequence of her experiences With the Chatterbox, Dorinda sug-
gested that it would be worthwhile to explore the possibilities of using it in child therapy, to increase auditory awareness as well as to expand attention span in children with disorders of

Acknowledgements. We would like to thank all the people who contributed ideas and practical help to the Chatterbox project. Chris Corbett, Kel FidMor, Re, and sespecially Bob Booker, John Brazier and Richard Pope, whose hard work went well beyond the call of duty. The spectrograms were made by Linda Shockey. We are very grateful to using the Chatterbox with emotionally retarded children.

Two-way cable tv system

 for ty entertainmentA new bi-directional cable tv system is shortly to become operational in the
USA. It allows viewers to select special film programmes, to actively participate in educational courses and quiz games, and even to shop using their tv set. It
also enables subscribers to contact the police in an emergency. A network using this concept has
been developed jointly by Pioneer Electronic Corporation and Warner Cable Corporation, a subsidiary of Warner Communications, and will eventually
cover about 300000 households (an cover about 300,000 households (an
estimated one million people) in an area around Columbus, Ohio. Previous systems have only enabled a relatively small number (a few thousand) subscribers to participate in programmes.
All the subscribers in the network are directly connected to the programme transmission centre by a bi-directional digital communications system. From this centre, each subscriber can receive
up to 30 regular ty programmes, up to up to 30 regular tv programmes, up to
ten pay-tv programmes, and by using a ten pay-tv programmes, and by using a
pushbutton control unit, participate in various other programmes.
A pay-as-you-see facility enables viewers to pay for extra programmes or
facilities as and when they want them It does this by monitoring the use of each subscriber's tv console by computer, and using the data obtained to
invoice them for the extra programmes and facilities used.

L.e.ds on the viewer's push-button remote control unit, shown in the accompanying photograph (actual unit if, for example, the viewer gives the correct answer in a multiple answer test following an educational programme. This facility can be applied to tv shopping as well as to educational subject product simply presses the appropriate response button and the computer notes the order and prepares a purchase note, which is passed directly to the upplier's warehouse.
Facilities are also available with the system to provide a subscriber with date information on his or her water, gas and electricity consumption.

Character rounding for the Wireless World teletext decoder

2 - Installation of Board 4 and further improvements

by J. H. Hinton, M.Sc.

Improvements to J. F. Daniels' original decoder design represent a further stag in evolution. Unlike some commercia 1.s.i. decoders, the unit now offe
complete compliance with the complete compliance with the
specification together with useful test and demonstration facilities.

THE ASSEMBLY of the new board is eased by the use of plated-through holes, and no special precautions are
necessary in its construction beyond ensuring that the capacitors stay within a height of $5 / 16$ in above the board. To simplify the wiring-in as far as
possible, the board has been laid out in half-depth format to mount above the rear halves of Board 3 and the analogue board. The seventeen links to rear pads the corresponding numbers on the lower side of the new board, while the other connexions go to its upper side The existing leads to the front panel to be reconnected as a final stage of re-assembly. "Extra-flexible" wire is strongly recommended for the new wiring and also for replacement where single-strand wire was used originally since this is liable to weaken or break times.
The complete assembly of four boards can just be fitted inside the $23 / 8$ in head room of the original cabinet, if carefully above the chassis and VR_{3} removed $\mathrm{C}_{12,13}$ may have to be hung over the ${ }^{12,13}$ may tront of the board or replaced by smaller diameter types so that Board 1 can be fitted $1 /$ in above it. A gap of $5 /$ sin betclear VR_{1} and VR_{2}, depending on the type used, but $3 / 8$ in is sufficient between Boards 3 and 4 . The analogue board should be mounted $1 /$ in above Board 1 simplest to use insulated spacers throughout with fibre washers unde nuts and screw heads where necessary. With four boards, the heat dissipation is considerably greater than in the orig. row of moderate size holes is drilled through the chassis and cabinet base at the front and in the top of the cabinet at the rear, to encourage airflow between the boards.

Board 4 are suffixed by U (upper) or L (lower), while those on Board 3 retain side) prefixes.

Installation

(1) Remove existing wires between W30 and Board 2 "white output", and
between C5 and edge connector 5 on Board 1 (EC 1,5).
(2) Isolate the following points on Board 3 by breaking the track leading from them:- IC_{104}, pins ${ }^{\text {noting that the track from pin } 11}$ runs along the upper side of the board under the i.c. before going through it close to pin 1) (108,
(3) Connect a 22 nF capacitor between

C34 and C36; link $(117,2)$ to $(101,4)$ and IC 117, pin 3 to pad C22.
(4) Support Board 4 with its underside upwards and link with lin lengths of Board 4 to their same-numbered partners on the component side of Board 3, with the exception of 42L, which is taken to a 5 V supply cap-
able of providing 530 mA , and 43 L able of providing 530 mA , and 43 L
$(0 \mathrm{~V})$ which is linked to pad C36.
(5) Link edge connector 13 U on Board 4 to (108,1) on Board 3; 20 U to $(124,8)$; 29 U to (113, 11); 31U to (121, 6); 33 U to (105, 15); 35 U to (104,15); 36 U to (104, 14); 37 U to (104, 13); 38 U to (10rds 3 and
Boards 3 and 4 may now be bolted
On board 2, break the two track connexions on the underside of the board going to IC_{42}, pin 7 (dot count 6)
and transfer them both to $(42,9)$ (dot aunt 7). Take a lead from (57, 3) (Flash) to 39 U on Board 4 and check the polarity of C_{12} and C_{13} (shown incorrectly on the instructions supplied with some kits) - the two outside ends are positive. The rate of flash may be slowed down by increasing these capacitors to $220 \mu \mathrm{~F}$.
At this stage the Roll mode and Write pulse modifications described in
Daniel's follow-up article (W.W. Feb. 1977) may conveniently be carried out, together with the one for interleaved magazines, if required.
Turning now to Board 1 , remove IC_{1} pin 2 hole to pad 12U, and from pin 11
hole to 14 U . Isolate $(4,13)$ by cutting the track leading from it on the underside to ECl, 17; 21U to EC1, $21 ; 34 \mathrm{U}$ to (7,13) and 5 U to EC1,5. The now spare NOR gate $(4,13)$ may be used to cure the jumpiness in the setting of pictur width and margin by connecting it ditional input fed from (10,11); it is also recommended that R_{3} be changed to 270 ohms and $(12,11)$ be transferred to 0 V The four boards may now be bot together.
On board 4, link the EC pads on the immediately below on the analogue board, and connect 25 U to the cut-hole signal fed to the video interface board from the "newsflash" switch on the front pin of the used section of the "Teletext" switch. If required, connec the "upper-case only" switch betwee pads $\mathrm{S}_{1 \mathrm{l}}$ and $\mathrm{S}_{1 \mathrm{~b}}$ alongside IC_{201}, and the pad S_{2} (between IC_{212} and R_{1}) and 0 V both switches being open for norma operation.

Held graphics

The rendering of held graphics can be improved by two modifications to Board 3 which can be added on their own or in conjunction with the new
board. When a graphics symbol is held over a control character which changes the display colour (a set-after change); a narrow band of the new colour may be visible at the right hand edge of the changes the colour has a shorter propagation path through the logic than the Y character signal. This can be overcome by introducing a compensating delay into the colour signal as follows:-
(1) Cut the track links and insert 100 ohm resistors on the underside of the board between $(105,3)$ and (110 , $10)(\mathrm{red}),(105,13)$ and (10,11) (blue).
2) Connect three 560 pF capacitors on the top side of the board from IC_{105} pins 3,6 and 13 , to 0 V . This value was type but may vary between individual decoders.
'graphics hold' control which sets the Hold mode (being previously unset) the time taken to establish the mode may give rise to a gap at the left hand edge of
the symbol (visible for example on Oracle, Page 111) which can be cured by adding a 390 pF capacitor from $(122,13)$ to $0 \vee$; its effect is to delay the blanking effect of the control character signal fed o (116,5) until the hold signal to (116,4)

General
The type of capacitor used here or elsewhere in the modifications (apart from C_{201}) is not critical, provided that
miniature high-K ceramic varieties with a tolerance of -20% to $+80 \%$ such as the Mullard C629 series (yellow square plates with a green band along the top) are avoided.
The new board continues the practice of leaving unconnected the pins of unused active-low i.c. inputs. Unlike c.m.o.s., where a free input may float to almost any level depending on leakage
resistances, the internal base resistance of the t.t.l. input stage is sufficient in practice to hold it up in the high state against any capacitance coupling inside the package; although an external pull up is recommended by i.c. manufac wise be left floating under some switch conditions, such as (201,1) and (214,9), are provided with pull up resistors to overcome possible coupling through the the breakdown rating of a t.t.l. input is only 5.5 V as against 7 V for the main supply pin, inputs must never be directly connected to the positive rai without a protective series resistance. Thereduction in gap between chagives a narrower picture for the same clock frequency and while this can be reduced to 7 Mhz to fill up the screen as being more readable.
With the use of components for C_{201} and R_{201}, rather than having a preset adjustment, the unit should work immediately provided that no faults are present. The action of checked most easily on double-height characters; pre-rounding and postrounding can be disabled separately by shorting $(210,9)$ and $(210,1)$ respec

ively to 0 V .

and upper case only converter can be added separately to the $W W$ decoder or used independently in other display applications.
The circuitry to switch between a tion mode and seven for the display cell can be made up from three i.c. packages as shown in Fig. 5 . It is necessary to use a synchronous counter, and to switch
over the exclusive-OR gate by a dot - count 3 signal derived from a single

gate rather than the 7442 four-to-ten line decoder IC_{42}, because the propaga
tion time round this loop via either Q or Q_{B} must be less than half a clock period. The conversion of lower-cas alpha symbols to upper case also requires three i.c. packages as shown in
Fig. 6. However, the availability on Board 4 of spare gates in the characterrounding logic enabled this conversion to be incorporated with the addition of only one 7400 package, at the cost of no preserving the long
6 in the code table).
It is important to observe the distinc tion between the 0 V line and earth or chassis. While many older sets which used half-wave h... rectification directly
from the mains with the chassis taken to neutral were relatively safe when connected correctly, newer ones often use a bridge arrangement where the chassis is live on alternate half cycles. It is essential that the decoder metalwork
is taken to a true earth, and that a
double-wound mains isolating transformer of adequate rating is used during commissioning and until the decoder is cable braiding well insulated.

Acknowledgements

I would like to express my thanks to Richard Russell for building a prototype and for valuable help over interfacing to his Board 3 circuitry; also to Messrs
Catronics Ltd for their assistance in designing the printed circuit layout and supplying prototype boards.

Lack of space prevents publication of Lack of space prevents publication of
the printed-board pattern and the interboard wiring diagram of the complete decoder, including the wiring to this latest board. However, readers are invited to send a stamped, addressed
envelope for copies, which are offered envelope for co

Microcomputer design

6 - The Z80 microprocessor explained
by Phil Pittman, B.Sc. in association with NASCO Ltd

Having considered some of the generalities of microcomputer hardware and software in previous articles, and also some parts of a particular practical system, this six-part series concludes by looking more closely at the central microprocessor. Although some of the following information has been given in previous articles (November and December 1977; January, February and August 1978), it is being repeated

A BLOCK DIAGRAM of the interna architecture of the Z80 central processing unit is shown in Fig. 1. The diagram shows the major elements in the c.p.u. and it should be referred to throughou look at the c.p.u. registers. The Z80 c.p.u. contains 208 bits of read/write memory that are accessible to the programmer. Fig. 2 illustrates how this registers and four 16 -bit registers. The registers include two sets of six general purpose registers that may be used individually as 8 -bit registers or in pairs
as 16 -bit registers.

pecial purpose registers

1. Programme counter (p.c.). The programme counter holds the 16 -bit address of the current instruction being fetched from memory. The p.c. is contents have been transferred to the address lines. When a programme jump occurs, the new value is automatically placed in the p.c., overriding the incre Stack.
inter (s.p.) Any portion of external r.a.m. may be dedication as a tack area. This is used as a method of sequentially storing or retrieving data on a last-in first-out (l.i.f.o.) basis. The
s.p. holds the 16 -bit address of the current top of stack. Data can be "pushed" onto the stack, 16 -bits at a time, from specific c.p.u. registers or "popped" off the stack into specific c.p.u. registers hrough the execution of PUSH and the stack is always the last data which was pushed onto it. Any stack push or pop automatically modifies the s.p. in such a way that the s.p. always contains The address of the current top of stack

programme counter contents before programme can later return to the sam place again by popping the old value ack to the p.c.
The stack allows simple implementaon of multiple level interrupts, un mited subroutine nesting and simplification of many types of data manipulation. Fig. 3 indicates th peration of the stack.
2. Two index registers (IX and IY): the
two independent index addressin modes. An index register is used as a base to point to a region in memory in which data is to be stored or from which it is to be retrieved. An additional byte is included in indexed instructions to or negative, from this base. This mode of addressing greatly simplifies many ypes of programme, especially whe tables of data are used.
3. Interrupts page address register (I), where an indirect call (a special type of jump) to any memory location can be chieved in response to an interrupt. tore the high order 8-bits of th memory of the address. This feature allows the interrupt service programme o be located anywhere in memory with bsolute minimal access time to th routine.
.p.u. contains a memory refres counter to enable dynamic memories to be used with the same ease as static dynamic r.a.m. is beyond the scope of this article, it is sufficient to say that ynamic r.a.m. stores its data as charges on capacitors. In order that this charge

$$
=2
$$

does not decay it is necessary to provide a partial address for the blocks o memory cells, plus certain clock pulses,
within a specified minimum time. Thes are the functions provided by the Z80 The 7 -bit refresh register is automati cally incremented after each instruction
fetch. The data in the refresh counter is sent out on the lower portion of the address bus along with a refresh contro signal while the c.p.u. is decoding and
executing the fetched instruction This mode of refresh is totally transparent in that it does not slow down the c.p.u operation. The programmer can load the register for testing purposes, bu programter is not normally used by the

The c.p.u in and flag registers

The c.p.u. includes two independen 8 -bit accumulators and associated 8 -bit
flag or status registers. The atcumula flag or status registers. The accumula-
tor holds the results of 8 -bit arithmetic or logical operations while the flag or status register indicates specific conditions for 8 - or 16 -bit operations, such as indicating whether or not the result of an operation is equal to zero. The pro-
grammer selects the accumulator and flag pair with which he wishes to work with a single exchange instruction so that he may easily work with either pair.
General purpose registers There are two matched sets of general purpose registers, each set containing six 8 -bit registers that may be used

Fig. 4. Pin numbers and functions in the Z80. The abbreviations are explained in the text.
dividually as 8 -bit registers or as 16 -bit register pairs by the programmer One set is called $B C$, DE and HL while the complementary set is called $\mathrm{BC}^{\prime}, \mathrm{DE}^{\prime}$ and HL'. At any one time the programmer can select any one set to work with
through a single exchange command for the entire set. In systems where a fast interrupt response is required, one set of general purpose registers and an accumulator/flag register may be pre-
served for handling this very fast served for handling this very fast
routine. Only simple exchange instructions need be executed to go between the routines. This greatly reduces interrupt service time by eliminating the requirement for saving and retrieving
register contents in the external stack during interrupt or subroutine processing. These general purpose registers are used for a wide range of applications by the programmer

Arithmetic and logic unit (a.l.u.)

The 8-bit arithmetic and logical instructions of the c.p.u. are executed in the a.l.u. Internally the a.l.u. communicates with the registers and the
external data bus or the internal data external data bus or the internal data
bus. The type of functions performed by the a.l.u. include: add, subtract, logical AND, logical OR, logical exclusive OR, compare, left or right shifts or rotates, increment, decreme
and test bit. and test bit.

Instruction register and c.p.u

control
As each instruction is fetched from memory, it is placed in the instruction register and decoded. The control sec-
tion performs this function and then generates and supplies all of the control signals necessary to read or write data from or to the registers, control the a.l.u. and provide all required external control signals.

External signals

The Z80 is a single chip c.p.u. packaged age. Fig. 4 shows the functions whichare brought out to the external pins of the device while Fig. 5 shows how the device fits into the microcomputer circuit. All outputs from the c.p.u. with
the exception of M1, RFSH, HALT and the exception of M1, $\overline{\text { RFSH, }}$ HALT and With the exception of the data and address buses all signals have an active low state. The following paragraphs explain the various signals and connecFig 5

Address bus $\left(\mathrm{A}_{0}-\mathrm{A}_{15}\right)$. Pins $\mathrm{A}_{0}-\mathrm{A}_{15}$ constitute a 16 -bit address bus. The bus provides the address for memory (up to 64 K bytes), data exchange and for $1 / 0$
device data exchanges. I/o addressing uses the eight lower address bits to allow the user directly to select up to 256 input or 256 output ports. A_{0} is the east significant address bit. During tain a valid refresh address.
-

Data bus (D_{0} - D_{7}). The 8 -bit bidirectional data bus is used for data exchanges with memory and i/o devices. This indicates that the current machine cycle is an instruction fetch cycle. Memory request (MREQ). The memory Memory request (MREQ). The memory
request signal indicates that the address request signal indicates that the address
bus holds a valid address for a memory bus holds a valid address for a memory
read or memory write operation. read or memory write operation.
Input/output request (IORQ). The input-output request signal indicates that the lower half of the address bus
holds a valid $\mathrm{i} / \mathrm{oaddress}$ for an $\mathrm{i} / \mathrm{o} \mathrm{read}$ holds a valid i / o address for an $1 / 0$ read
or write operation. An or write operation. An al anerated with an $\overline{\mathrm{Mi}}$ signal when an interrupt is being acknowledged to indicate that an interrupt response vector (address) can be placed in the data
bus by the interrupting peripheral. Inbus by the interrupting peripheral. In-
terrupt acknowledge operations occur during M1 time while i / o operations never occur during M1 time.
Read (RD). The "read" pulse indicates that the c.p.u. wants to read data from memory or an i/o device. The addressed signal to gate data onto the c.p.u. data bus. $\overline{\text { brite }} \overline{(W R)}$. The "write" signal indicates that the c.p.u. data bus holds valid ata to be stored in the addressed memory or i/o device.

Refresh (RFSH). The "refresh" signal ddress bus the lower seven bits of the for dynamic contain a refresh addres for dynamic memory and the current refresh operation on all dynamic memories.
Halt state $\overline{(H A L T)}$. The $\overline{\text { HALT }}$ output from the c.p.u. indicates that a "halt" The c.p.u. remains halted until reset or interrupted. During a halt, refresh activity is maintained.
Wait (WAT). The "wait" input may be ased to indicate to the c.p.u. that the not ready for a data transfer. Additional one clock cycle timing states are enerated for as long as the "wait" peed is active. This signal allows any ynchronised to the p . terrupt request (INT)
equest" signal is generated by $\mathrm{i} / \mathrm{o} \mathrm{de}$ vices. A request will be honoured at the indernal soware construction if the

Fig. 5. How the $Z 80$ m.p.u. is used in the microcomputer showing address and data buses and other associated logic.
enable flag is enabled. When the c.p.u. accepts the interrupt, an acknowledge
signal (IORQ) during M1 time) is sent out at the beginning of the next. instruction cycle. The c.p.u. can respond to an interrupt in three different modes that are selected by software instruc tions.
Non-m
Non-maskable interrupt
non-maskable interrupt request line a higher priority than INT and is always recognised at the end of the current instruction, independently of the status
of the interrupt enable flag NMI of the interrupt enable flag. NMI
automatically forces the Z 80 to restart at memory address 0066 hex. The programme counter is saved automatically in the external stack so that the user can later rur that was interrupted.
Reset (RESET). A reset forces the pro-
gramme counter to zero and initialises the c.p.u.
Bus request $\overline{\text { (BUSRQ). The "bus requ- }}$ est" signal is used to est" signal is used to request the c.p.u.
address bus, data bus and three-state output control signals to go to a high impedance state so that other devices can control these buses. The request will be granted as soon as the current c.p.u. machine cycle is completed. knowledge" is used to indicate to the

requesting device that the c.p.u. address
bus, data bus and control bus signals have been set to their high impedance state and the external device, e.g.t the d.m....
buses.

Clock (1). The $\mathbf{Z 8 0}$ c.p.u. requires a single phase t.t.l. square wave clock for
timing control. The frequency of this is timing control. The frequency of this is
2.5 MHz for the standard Z 80 or $4.0 \mathrm{MHz}, ~$ for the Z80A.
As shown in Fig. 5 the c.p.u. clock is
driven from a conventional t.t.l. buffer with a 330Ω pull-up resistor, as required by the package. The input to the buffer can be selected from points on the video r.a.m. frequency divider chain (August issue, p.56), which is driven from a
16 MHz crystal. A link has been provided to allow the clock frequency to be set to or 4MHz.
The logical design of the microcomputer has been arranged to exploit the
non-maskable interrupt facility of the non-maskable interrupt facility of the
Z 80 , mentioned above, for a very special purpose - to provide a single step ac-
tion for programme development work By utilising external logic to interrupt the processor a fixed number of M1 cycles after a known command has been executed, the execution of the programme can be halted by causing
the interrupt to occur during a particular instruction. The software arranges successive instructions in a programme to be interrupted, and immediately after the interruption all major registers are
mapped into the video r.a.m. (August 1978 issue) and are consequently displayed on the tv set. The software will played on the tv set. The software will
then wait for a specific keystroke to move the next instruction into the interrupting position. All this is necessary lengths, and unless a huge search table is provided to establish the lengths of each of the 158 different Z80 instructions, the software has no other means of "knowing" which bytes are instruc-
tions, which are data and which are operands.
The particular method chosen for this system is to cause a non-maskable interrupt on the fourth M1 cycle after the low-to-high transition of bit 3 of
port 0 . The counting and blocking of the port 0 . The counting and blocking of the
interrupt is performed by 74LS74 integrated circuits and associated gates. This system is also reset by the c.p.u. reset signal.

The instruction set

A previous article in this series has outlined the various groups of instructions constituting the Z80 instruction set. The following paragraphs provide
more detail on the facilities offered by more detail on the facilities offered by
the instruction set, although it is not the instruction set, although it is not
possible to give full descriptions in the space available.
Load and exchange. These are the main instructions used for transferring data and memory locations. Any 8 -bit quantity may be freely moved around by
able of performing a wide range of 8 -bit and 16 -bit arithmetic and logical opera tions, as listed earlier. In. all of these crement, the specified 8 -bit operation is performed between the data in the accumulator and the specified source of
data. This source may be data. This source may be any of the c.p.u.'s 8 -bit registers, memory addres
by (HL), (IX +d$)$ or (IY +d$)$) "immediate" data contained as part of the instruction. The result of the operation is placed in the accumulator, with the exception of the "compare" instruction which leaves the accumulator
unaffected. All of these operations affect the flag register as a result of the specified operation.
The facilities of the flag register and instruction set allow arithmetic operamultiprecision signed or unsigned binary numbers, and multiprecision two's complement signed numbers. A group of 16 -bit arithmetic instruc the Z80's 16 -bit register, frequently the Z80's 16 -bit register, frequently
using HL as a 16 -bit accumulator. These simplify address calculations or other 16 -bit arithmetic operations.
Bit manipulation. The ability to set, reset or test individual bits in a register or memory location is needed in almost every programme. These bits may be
flags in a general purpose software flags in a general purpose software
routine, indications of external contro routine, indications of external contro
conditions or data packed into memory locations to make memory utilisation more efficient.
The Z80 has the ability to set, reset or
test any bit in the a ccumulato test any bit in the accumulator, any general purpose register or any men
location with a single instruction.
Jump, call and return. A "jump" is branch in a programme where the programme counter is loaded with the 16 -bit value specified by one of a
number of available addressing modes The "jump" group has several different conditions that can be specified to be met before the jump will be made. If these conditions are not met, the programme merely continues with the next
sequential instruction. The conditions sequential instruction. The conditions
are all dependent on the data in the flag register. Jump addresses may either be determined from information contained as part of the instruction or from certain of the c.p.u.'s 16 -bit registers. The latter
capability allows programme jumps to capability allows programme jumps to
be a function of previous calculations. A "call" is a special form of jump where the programme counter contents are pushed onto the stack (addresses by
the stack pointer register) before the the stack pointer register) before the
jump occurs. A "return" is the reverse jump occurs. A "return" is the reverse stack is popped directly into the p.c. to form a jump address. The "call" and "return" allow for easy handling of nes and interrupts.
Input/output. The transfer of data bet ween the microcomputer and th
peripheral devices is accomplished vi the c.p.u. 8 -bit registers with the aid of

Wireless world, Jan uary 1979
instructions from the i/o group. An ither as part of the instruction or as the contents of register C. Special block i/ instructions of the Z80 allow the ransfer of complete blocks of data
directly between an i/o port memory with a single instruction simi ar to those for block memory moves.
Flags. Each of the two Z80 c.p.u. flag egisters contains six bits of informa tion which are set or reset by various .p.u. operations. Four of these bits ar testable; that is, they are used as condiions. For example, a jump may be desired only if a specific bit in the fla egister is set. The four testable flag bit are:

1. Carr
. Carry flag (C). This flag is the carry ulathe highest order bit of the accube set during an add instruction where carry from the highest bit of the accumulator is generated. This flag is also subtract instruction. The shift and rotate instructions also affect this bit. 2ero flag (Z). This flag is set if the esult of the operation loaded a zer into the accumulator. Otherwise it is
2. Sign flag (S). This flag is intended to be used with signed numbers and is set if the result of the operation wa egative. Since bit 7 represents the sig f the number (a negative number has 7 in the accumulator
3. Parity/overflow flag (P/V). This dual purpose flag indicates the parity of he result in the accumulator when ogical operations are performed, and it represents overflow when signed two' performed. The $Z 80$ overflow fliag and cates that the two's complement number in the accumulator is in erro since it has exceeded the maximum possible (+127) or is less than the min mum possible (-128) number that can There are also two non-testable bit in the flag register. Both of these are used for b.c.d. arithmetic. The "hal carry" (H) flag is the b.c.d. carry or bits of the a.l.u. This is examined by the Z80's special "decimal adjust accumu lator" instruction used when perfor ming decimal arithmetic. The "subtrac flag" (N) is also used by the decimal
adjust instruction to indicate if the previous arithmetic instruction was an addition or subtraction.
The flag register can be accessed by he programmer and has the following ormat:
nterrupt response. The purpose of an nterrupt is to allow peripheral devices manner and force the c.p.u. to start a
peripheral service routine. Usually this outine is involved with the exchange o ata or status and control information between the c.p.u. and the peripheral the cp.u returns to the operation from which it was interrupted.
The Z80 has two interrupt inputs, a Tofware maskable interrupt and a non askable interrupt. The non-maskable he programmer and it will be accepted whenever requested by a periphera device. This interrupt is generally reserved for very important functions ccur such as impending power failure occur, such as impending power failure
When the Z80 receives a non-maskable interrupt it performs an automatic sub routine call to a predetermined memory ddress (0066 hex)
The maskable interrupt (INT) can be electively enabled and disabled by the mer to disable the interrupts during periods where his programme has timing constraints that do not allow it o be interrupted. The Z80 can be pro
grammed to respond to maskable interrupts in any one of three possible modes. 8080A microprocessor, i.e. the 8080 A ' organisation is a sub-set of the Z80's one of the Z80's interrupt modes is identical to that of the 8080A. In this mode, when the c.p.u. acknowledges an interrupt, it expects some externa hardware to supply an instruction to the (usually a jump or call) rather than getting the next instruction from the programme memory. This means tha in 800 A can easily be replaced by a Z8 in a system without necessarily pecially as 8080 A programmes ar upward compatible, at the binar machine code level, with the larger Z80 instruction set.
second mode of Z80 intequirements the is quite attractive. In this mode, when ever an interrupt is accepted the c.p.u performs an automatic subroutine cal The third mode adaress (0038 hex) ponse is the most powerful. In this mod the interrupting device is required to identify itself by supplying an 8 -bi interrupt is ar the c.p.u. when th interrupt is acknowledged. (Note tha
the Z80 activates both M1 and IORQ simultaneously to signify an interrup acknowledge cycle.)
With this mode the programme maintains a table of 16 -bit starting ad routine. The table may be located any where in memory. When an interrupt accepted, a 16 -bit pointer must b formed to obtain the desired interrup the table. The upper eight bits of thi the table. The upper eight bits of this
pointer are formed from the contents of
the c.p.u.'s I register, which must hav been previously set up by the program mer. The lower eight bits of the pointe
are supplied by the interrupting device are supplied by the interrupting device table contents, an indirect call can be made to any memory location. This is illustrated diagrammatically in Fig. 6 All of the devices in the Z80 peripheral family are designed to operate in thi grammer is able to specify a unique 8 -bit interrupt vector to each peripheral which it supplies to the c.p.u. during interrupt acknowledge. Interrup priority is established by a "daisy peripheral devices.

References

1. The Zilog Z80/Z80A c.p.u. Technica
2. The Zilog Z80 Assembly Language Pro 2. The Zilog Z
gramming Manual.

Later this year we hope to publish a complete
constructional design for a scientific com constructional design for a scientific com puter using the $Z 80$ m.p.u. as a processor.
\qquad

wW diary overseas

The publishers of the Wireless World diary
T. J. \& J. Smith of London SW19, do not supply direct to the public. If you want a copy supply direct to the public. If you want a copy
you will have to get a bookseller, such as W . H. Smith, to order through the trade. If you live abroad from the UK, Wireless World can
supply you. Send $£ 1.50$ to WW Diary supply you. ${ }^{25}$, Dorset House Stamford Street, London SE1 9LU. The latest edition includes new sections on standard frequency transmis sions, time code transmissions, UK broad-
casting stations, and enlarges the address casting stations, and eniarges the address organisations by 75%.

Microelectronics design

Designing with single-chip microcomputer is the subject of one of the papers to be
presented at the Microsystems '79 con ference and exhibition this year, January 3 to February 2. Other topics covered are bubble memories, microprocessor inter-
facing, architecture of 16-bit processors, high level languages and costing m.p.u. . osttware The event will be at the West Centre Hotel,
Lille Road, London SW6 from 09.30 to 18.00 hours each day. Conference details from IPC House, Bury Street, Guildford, Surrey GU 5AW (Tel: 048331261). Exhibition details
fouser
from Iliffe Promotions from Iliffe Promotions Ltd, Dorset House Stamfo
$8000)$.
 $=$

Microvision redesigned as competition looms

Re-designed Sinclair TV receiver, above and below right, is big

$\times 4$ keyboard and displays the "minute minder," oven tempera-
ture, on/off time and hot plate temperature permanently in a total of 14 digits.
In case you're worried about
mains failure a standby battery mains failure a standby battery
automatically takes over and 200 kHz oscillator takes over timing. GIM's address in the U.K.
is 1 Warwick Street, Londor is 1 WWB.
WW 302

Radio 4 converte
for m.w. sets
Ambitune is the name given to a neat and simple long-wave con-
verter for medium-wave sets, which will be invaluable to Retsio
whio
4 listeners, come 4 listeners, come November 23 .
The converter measures 9 cm square by 2.5 cm thick and sits beside or beneath a m.w. set,
inserting the up-converted
 $" 200 \mathrm{kHz}$ signal at around
900 kHz via a ferrite rod aerial
assembly The oscillator circuit is dessembed. for operation down to 2 designed for operation down to
to 3 volts, and the makers say that a 9 -volt manganese alkaline
battery (as supplied) will last for battery (as supplied) will last for
700 to 900 hours. Tuned circuits are alterable. Price is $£ 6$ in-
cluding battery, v.a.t. and postage. Ambit International,
Gresham Road, Brentwood, Es ww 303

16bit microcom puter $=$ minicom puter cpu
A complete minicomputer control processor in one 40-pin ackage is how Fairchild de-
scribe their 9440 Microflame product. The 9440 , whose intrinsic
memory capability is 32,768 16-

WIRELESS WORLD, JANUARY 1979

ditional i.s.i. circuits include
ditional i.s.i. circuits include a
48-pin 941 for controlling exter-48-pin 9441 for controling exter-
nal memories and a a 942 circuit
to expand the input/output bus to expand the input/output bus
for interfacing. Microflame forms for interfacing.
part of two microcomputers -
S part of two microcomputers -
Spark-16 and Blaze-16 - and a
Fire package includes programs Fire package includes programs
ranging from simple loaders to ranging fom compilers. Future
Fortran
improvements in density and improvements in density and
performance are expected to experformance are expected to
pand the range of applications.
pas Fairchild Camera \& Instrument
(UK) Ltd, 230 High Street, Pot(UK) Ltd, 230 High Str
ters Bar, Herts EN6 5BU
ww 304

Wattmeter takes

20 times overload
Clive Green says he made the cive Green says he made the
mistake of not having a development contract for the work his
company did on the model 2601 company did on the model 2601
power meter. He spent $£ 10,000$ on the strength of the MoD saying they needed 50 and in the end
only buying 12: "one took the only buying 12: "one took the
word of a major in the British word of a major in the British
Army." But he's got high hopes anyway for the meter, as it ex-
tends from d.c. to 520 MHz and up tends from d.c. to 520 MHz and up
to 300 watts for 5 minutes in 30 (50 watts continuously). "There's nothing else indicating true r.m.s. hat covers that range of power
and frequency." And other r.f. wattmeters overload too easily,
he argues. His oil-cooled load will he argues. His oil-cooled load will
absorb 1000 watts for a few absorb 100 watts for a few
seconds. Accuracy depends on frequency and range but is within $\pm 1.5 \%$ f.s.d. using a calibration
from Green Electronic \& Communication Equipment Ltd, Newnham Industrial Estate,
Plymouth PI7 4LL
ww 305

Electric

 kilogram-force, equal to9.8 newtons. Perhaps you already knew, but it's used in describing torque values in a range of elec
tric screwdrivers recently intro tric screwdrivers recently intro-
duced into the U.K. from Swit duced into the U.K. from Swit
zerland. There are two Fimecor ranges, one covering torque
values up to $0.35 \mathrm{kpcm}(550$ varies), and the other - more versatile ($(220$ series) with in-
terchangeable modules - having terchangeable modules - having
torque values up to 12 kpcm (pic torque val
tured).
Torque Torque variation is between 2
and 3-to-1 for the and 3-to- 1 for the four member
of the 220 series, and as well as of the
the torque modules, the motor module and screw-holding sleeve
are interchangeable. Screws are are interchangeable. Screws are
held by suction in one of about 40 different sizes of sleeve and driven, in either direction, by blades of the "Phillips" type,
hexagonal "allen" type (male and female), or one of a variety of slot types. A spare motor comes with
each screwdriver and accessories each screwdriver and accessories
include foot-operated switches adjustable suspension and vacuum pumps.
The 50 serie
The 550 series are smaller,
lighter in weight and combine the vacuum pipe with electric supply, resting on a pressure switch in
the power supply housing when not in use. One model in the series has speed variable from 400
to 900 rev $/ \mathrm{min}$ t the rest to $900 \mathrm{rev} / \mathrm{min}$; the rest are fixed
at $600 \mathrm{rev} / \mathrm{min}$. Made by SSIH Equipment SA of Bienne - pre-
viously known as Fine Mecaniviously known as Fine Mecanique SA - they are imported by
SSIH Equipent (UK) Ltd at 67
Saffron Hill, London ECIN 8RS. WW 306 series 220
WW 307 series 550

555 in cmo

Intersil's new c.m.o.s. equivalent "behind the company's back," according to Geoff Coole, N. turned down at Intersil, the idea for a c.m.o.s. 555 was nevertheless pursued as a "back-of-anunofficially as part of a test pattern on a wafer production line. Thus when priririties had
altered and a need for the device eventually recognised, it had already been developed. The need, of course, stems from the high current consump-
tion of the bipolar 555. The new circuit requires a supply rating of
80uA - less than one twentieth $80 \mu \mathrm{~A}$ - less than one twentieth of
that for the bipolar version - and

it will operate for $3,750 \mathrm{~h}$ from two 300 mAh cells. The metal-gate
m.o.s. process gives the device a m.o.s. process gives the
working range of 2 to 18 V (the bipolar 555 needs at least 4.5 V).
And because there is no problem And because there is no problem of spike generation due to
"crowbar" currents in the output driver of the bipolar devices the control and supply voltage de-
coupling capacitors are not required to eliminate the supply transients. Prices are higher than the bipolar type, so it's not competing with currently-supplied
555s. Small in-line single timers cost 56 pence in quantities of a hundred (71 pence TO99) and
dual timers cost $£ 1.08$. Intersil Inc., 8 Tessa Road, Richfield Estate, Reading, Berks RG1 8ND.
WW 308

Smoke clouds i.c. choice
Shortly after RCA announced its which integrates f.e.t.-input with gate protection and subsequent
bipolar amplification, National bipolar amplification, National
Semiconductor sounded off about theirs. Both requiring an ionization chamber, the National
device LM1801 also requires an device LM1801 also requires an
f.e.t. sensing element - the NS5301 is sold with the i.c. for "\$1
per set" in large volumes. Na. per set" in large volumes. Na-
ional feel their bipolar-only approach is more cost-effective and their i.c. includes a power transistor capable of producing
85 dB in a horn. Both have a standby current around 7 to $8 \mu \mathrm{~A}$. RCA Solid State, Sunbury-on-
Thames, Middlesex TW16 7HW Thames, Middlesex TW16 7 HW
and National Semiconductor Ltd, 301 Harper Centre, Horne Lane, Bedfor MK 40 1TR.
WW 309 (RCA)
WW 309 (RCA)
WW 310 (NS)
synthesis
Speak \& Spell is Texas Instru-
ments talkin seven-year-olds and upwards. It uses a speech synthesis circuit together with two 128 K r.o.ms,
each with 100 seconds of speech storage capacity, and a version of
the TMS 1000 microprecesso Based on linear predictive coding, the key to the system is
the ability to squeeze a multistage filter onto the synthesizer chip. A periodic or random sequence of pulses, for voiced/
unvoiced sounds is applied to ten-stage time-varying digital ten-stage time-varying digital
lattice filter modelling the vocal
tract, via an amplitud tract, via an amplitude modula-
tor, and then to an 8 -bit d-to-a tor, and then to an 8 -bit d-to-a
converter, amplifier and loud-

speaker. Filter coefficients are usually up dated every 20 ms , a rate that results in speech of good
quality and with reasonable quality and with reasonathe rate would model the vocal tract
more closely but would need increased storage.) Texas say a UK
version will be available soon but version will be available soon but
if you can't wait Dixons and if you can't wait Dixons and
Wallace Heaton shops stock the U.S. model. ww 311

Caveat emptor

forced is a waste of time can't be en for instance, is for the police force and is not intended for those who have missed LBC on their way up from Capital Radio and become, hooked on reports from bored coppers passing the time of day
with MP, or whatever it is. If you do happen on one of these intimate little chats, you are supposed to blush primly and tune somewhere else. No one will prosecute you, even if your guilty secret is discovered, because the radio is
not permanently and deliberately fix tuned to the police frequency and unless you have just liberated two million quid from the bank, you don't in tend to make use of the information.
Working on this premise a firm Working on this premise, a firm in
Surrey is marketing an American device which is broadly tuned to cover much of the X and K bands which, it is pointed out, covers several radar frequencies and also, just as a matter of passing radio speed indicators. The publicity says that this is all right provided that you switch off the instant you become aware that you are in a beam. You speed, because that would make use of the restricted information.
If, then, as the distributors themselves point out, you mustn't listen and if accidentall, $\begin{aligned} & \text { any action as a result then the take }\end{aligned}$ operation tends to lose its point. One cannot say there is an incitement to break the law, but since, to use the device, you have to break the law, think that sales of the instrument haven't mentioned its name: I have no intention of advertising a device which so blatantly flouts the spirit and possibly the letter of a law which is in killing each other on

Sight and sound

More in sorrow than in anger, Jim Palm, editor of the radio programme
'Rail', writes to tell me that if I were trusting enough to travel by train occasionally (actually, they aren't his exact words - he's a rail enthusiast but I'm writing this) I would discover that v.d.us are in use at some stations
and even in the National Railway Museum restaurant in York Well, I'm delighted to hear about the station installations, but I must confess to a feeling of unreality about the resplace I frequent isn't to everyone's taste, but if I peer through the tobacco smoke long enough, I find I can easily read the menu on the black board (it used to be white, but Filthy Fred the washing his hands after scooping the

chips off the floor). Anyway, it does show that things can be done properly if British Rail only puts its mind to it. I mean, v.d.us in the local caff would save all that yelling back to the kitchen "Adam an' Eve on a raft, twice". Each
customer could have a terminal and simply punch out his order, with the absolute minimum of fuss and no hint of embarrassment if he just wanted Two
finite

Infinite bafflement

It'll soon be Christmas. Actually, as you
read this, assuming anyone ever does, it has lately been Christmas, but it's still early November here. I thought that, this year, I would capitulate gracefully
and buy my daughter a decent record and buy my daughter a decent record tions with her in good time and took great care to explain all the jargon for her, recommending the features that were essential and going fully into all tuner sensitivity and power output, with particular reference to quality of reproduction and reliability. Having covered the field in some detail, and being conscious of a job well done, I which one she would like. She pondered for a long moment and said "Can I have a white one, please?". Well, that's women for you.

point of view is uncommon. Lots of people must want something that proa second's sleep it the thd will not lose hundred times worse. The music centres offered to the public now are, in my opinion at least, technology gone mad. to hear someal user who simply wants must be a truly forbidding array of knobs, toggles, lights and meters, many
of which mean less than nothing to him of which mean less than nothing to him
and are not used. A neighbour of mine, for example, has labelled the Dolby on-off switch on his tape-deck "soft" and "harsh" and uses it as a tonecontrol. It also makes a good scratch
filter, he says - meaning hiss, I suppose filter, he says - meaning hiss, I suppose,
What he uses the "Normal-FeCr-Cr0 ${ }_{2}$ " switch for, I hate to think.
I daresay that if people read the instruction books they eventually come to realize that their boxes of electronics
are wonderful, but I doubt very much are wonderful, but I doubt very much
that they care a jot. And if I'm right what a waste of resources! All this wizardry, completely and utterly useless, because unwanted. It was a lot
cheaper to have aspidistras.

Decisions, decisions

 It seems, of late, that no sooner do I extricate myself from the horns of one position to find onself in - than another comes trotting in the door, nostrils flaring and headgear rampant. It's only a little problem, really, this latest one, but it is giving my thriftynorthern soul a good deal to think about. I've just been promised a large set of records and I can't decide whether to have discs or cassettes. Now, you might think that if that's all I have to more pressing matters you could mention, like what Yorkshire is going to do without Boycott as skipper, and how one can stop next door's dog from desecrating the clematis, but I do assur
you that it looms large in my mind. ou tha see I only have to mind. cursory manner at a disc and it instantly becomes a mass of scratches. I have tried most of the products which are supposed to prevent this happening,
but the only effect so far is a large stain on the carpet where I spilt a bottle of magic jollop, claimed to reduce static, but also excellent as varnish remover. So, if I have discs, I daren't touch
hem. I suppose I could record them them. I suppose I could record them on dings and the cost of cassettes isn't negligible. Alternatively, of course, I could choose recorded cassettes, but I don't think that reproduction from them, on any machine I can afford, is as
fresh as from an undamaged disc. There you have it, then. Between the Devil and the deep blue sea. It's a worrying world
we live in.

Night and day, these are the ones.

Darkness

EEV Ebsicon The CCIV photronductive
tube from EEV using the silicon intensifier targei
principle which extends principle which extenas
sensivivit into very lowslight ranges. The Ebstorn makes C.CIV
operation possible in hitherto
impossible sinuations. IV reading of X-ray fluorascop images is a moical example.

Low-light tevels

EEVETicon
 amiy tagse:

Normal light levels

EEV Vidicon
Unbeatable for reliability, the statically or magnetically statically or magnetically integral mesh and a range of photo-surfaces based on antimony trisulphide

\star Highly suitable for flats, garages \& \star Highly suitabile for

* Battery operated - typical life
over 12 months with PP9.
\star Penetrating electronic warbler that commands attention due to
- Complete with 5 metres of cable magnetic door contact. optional rubber feet, 3 high security keys and all fixings for easy installa
* Any number of floor pressure mat and extra magnetic contacts can be added.
* Exit delay of 30 secs, and re-eniry delay of 12 seconds befor
\star Automatically resets after one minute in alarm condition to save neighbour annoyance.

RADEC COMBI 210 SELF-CONTAINED INTRUDER ALARM Proven reliable performance in many Scandinavian homes and now available in UK from
CITADEL PRODUCTS LTD., 50 High Street, Edgware, Middx. HA8 7EP. Tel: 01-951 1848 Only $£ 49.50$ inclusive price. SAE for installation instructions

West Hyde have more than 600 different instrument cases in stock + accessories

WW - 007 FOR FURTHER DETAILS

NOW!

SEMICON INDEXES
(International Semiconductor Device Data)

announce

THE NEW VOLUME 3
IC INDEX
his new volume follows the now well established format of the International Transistor Index and he Diode/SCR Index but in loose-leaf binder easily analogue and digital devices of international origin

SEND FOR DETAILS TO-DAY
SEMICON INDEXES LIMITED
7 KING'S PARADE, KING'S ROAD, FLEET. Hants. GU13 9AB Tel: 0251428526 Telex: 858193 (Barmer G)

The Only Firm for Quality Audio Kits
 HART ELECTRONICS
 HART

 Are proud to offer the onlyESIGNER APPROVED kit for the DESIGNER APPROVED kit for the Cassette Recorder

 -quality work that made the instrument in the first placebacked by a full vear's warranty too.
contact the address below for your nearest centr

Archcliffe Road, Dover, Kent. Telephone: 0304-202620
ww-088 FOR FURTHER DETAILS

i7A
1.7 Harewood Avenue, Marylebone Road, London NW1 Tel: 01-724 2497 Telex: 21879

FRANCE Son Professionnel, 2 Rue des Tennerolles 92210 Saint Cloud (Paris). Tel 6026815

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit specialy produced by integrex for this British NRDC backed surround sound system which is the resuli of 7 years' research:
 . systems (Not CD4), including the new BBC HJ 10 input selections is linear throughout and does not rely on listener fatiguing, logic enhancement techniques. Both 2 or 3 input sign
The decoder
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 49.50$ + VAT or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$
Tone cancel switch. 2 tape monitor switches.
Complete kit only $£ 63.90$ + VAT.

Wireless World Dolby ${ }^{\text {B }}$ noise reducer

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchablef. f. . stereo multiplex and biar filter. issions (as in USA).
- no equild ment needed for alignment.
- suitability tor both open-reel and cassetre tape machines.
- suitability for both open-reel and cassette tape machines.
check tape switch for encoded monitoring in three-head machines.

Also available ready built and tested

Calibration tapes are available for open-reel use and for cassette (specify which)

$$
\begin{aligned}
& \begin{array}{l}
\text { Typical performance } \\
\text { Nolse reduction better than } 9 \mathrm{~dB} \text { weigh }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { Harmonic distortion } 0.1 \% \text { at Dolby level typically } \\ & 0.05 \% \text { over most of band, rising to a maximum of } \\ & 0.12 \%\end{aligned}$
$\begin{aligned} & \text { Signalto-noise ratio: } 75 \text { d8B (20Hz to to } 20 \mathrm{kHz} \text {, signal } \\ & \text { at Dollbo levell) at Monitor output }\end{aligned}$
Dynamic Range. $>90 \mathrm{db}$

Complete Kit PRICE: £43.90 + VĀT
ion tapes are available for open-reel use and for cassette (specify which) Price $£ 2.40$ VAT
Single channel plug-in Dolby (®4) PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts are available with all components
Single channel board with selected fet
Gold Plated edge connector
Selected FFTs 65 p each + VAT $110 \mathrm{p}+$ VAT for two, $£ 2.10$ + VAT for four
Please add VAT @ $12^{\frac{1}{2} \%}$ unless marked thus*, when 8% applies (or current rates)
We guarantee full after-sales technicai and servicing facilities on all our kits, have
you checked that these services are available from other suppliers?

Price $£ 9.00$ +
Price $£ 2.75$ + VAT
Price $£ 1.75+$ VAT:*

Please send SAE for complete lists and specifications Portwood Industrial Estate, Churc Burton-on-Trent (0283) 215432 Telex 377106

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button
FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/ off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 .FET module requiring no RF alignment, ceramic IF INTERSTATION MUTE, and phase-locked IC. stereo decoder. LED tuning and stereo indicators. Tuning range Nelson-Jones Mk. 2 Stereo FM Tuner Kit. Price: $£ 69.95$ + VAT -

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection quie 85dB. THD typically 0.4\%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.
Mono $£ 36.40$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typically 0.3\%
LED sig. strength and stereo indicator

With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder $£ 44.20$ + VAT

STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The if comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filte PRICE: Stereo $£ 33.95$ + VAT

S-2020A AMPLIFIER KIT switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on loff' FET transient protection.
Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N .
and

$200+200$ watt AMPIIIIER
400W rms continuous - - 800W peak!
0.03% THD at FULL power!
PLUS all the following features too!
捳 *

PSI 4002 STUDIO MODEL

COMPLETE KIT ONLY £196.90 + VAT
READ THE REVIEW
IN SOUND INTERNATIONAL DEC 78

CHROMATHEQUE 5000 5-Channel Lighting effects system

ELECTRO-TECH COMPONENTS LTD.
364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667
CALLERS WELCOME

RADIO SHACK LTD
For Commun
Trio testgear.

drake *SALES *SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY
Giro Accoun No. 588 1151. Tolophone: $01-6247174$
Cablese: Radio Shack, London, NW6. Tolex: 23718

TRANSFORMERS

60 VOLT RANGE

		-	2024	${ }^{238}$	200	${ }^{3.0-3}$	25
		${ }^{\text {E }}$	Pap	13	${ }^{10} 10{ }^{1 / 4}$		
	1.0	${ }_{5}^{3.98}$	96	${ }_{223}^{235}$	500.500		
$\begin{aligned} & 12727 \\ & 125 \end{aligned}$	${ }_{3.0}^{2.0}$	${ }^{71.60}$	1.144	$\xrightarrow{208}$			
$\begin{aligned} & 123 \\ & { }_{40}{ }_{40} \end{aligned}$	4.0	12.52	${ }_{1}^{1.84} 1$	239			
120	8.0		1.84	221 206 206			
	10.0	${ }_{29.55}^{25.55}$		${ }^{203}$			
189	12.0	. 06	OA	${ }_{204}^{203}$	1A, 1	5-27,	

Barrie Electronics Litd. 3,THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 $3316 / 8$
AREST TUBE STATIONS: ALDGATE \& LIVERPOOLST.

Radiocode Clocks
As supplied to the National Physical Laboratory

 A range of optional outputs enabo the clocks to control othere equipment, and
additionon molues allow variale alarm times and durations to be programmed
Accessories include Accessories include a magnetic-tape ine erface which records a time code on one
chane of any oue
through a a clock. through a cloch
for application
most acpicurations yet inexexpensivive solution.
mont, a Radioc

SPARES PROBLEMS?

We are wholesale distributors of a wide
range of electronic components for in dustrial video and radio applications. Export quotations from our Reading
UNIVERSAL RADIO SPARES ITD
Sutcliffe Avenue
Earley, Reading, Berkshire, U.K

WIRELESS WORLD, JANUARY 1979

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them irect in due coure. Cards posted from abroad require a stamp. Trom abroad require a stamp. These Service Cards are val
six months from the date of

Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 Hanna Blicg, Beirut
Malaysia: Times six months ussalis?

 Cyorus: Goneral Pross
 Donmark: Dansk
Biadodistribution,

 Germany: W.E.ESaribach

 Holland: Van Ditmer N.V
 Incius: Internationer Boik
House Indinain Mercantile
 Cama Rood, Bombar 1 iran: :A.D.A. 151 K
Sorave, Tention
 P.0. Box 688 . TTi Aviv

$2 \mathrm{~Hz}-10 \mathrm{MHz}$ at $1 \mathrm{mV} / \mathrm{cm} \quad \mathrm{DC}-10 \mathrm{MHz}$ at $5 \mathrm{mV} / \mathrm{cm}$ Full X-Y Performance at $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$
Dartron D10 * Triggers from Y1 or Y2

* Single beam operation from $Y 1$ or $Y 2$
* Bright line auto and manual trigger $*$ ZModulation $*$ Fully stabilised
\&199 GUARANTEE

compare our specification

DARTRON INSTRUMENTS LIMITED Cranes Farm Road Basildon Essex Tel O268 285197/8 Telex884671

Now... the next generation of bench DMMs! Two New Keithley Models offer uncompromising performance and outstanding value!

- Accuracy $31 / 2 /{ }^{\prime \prime}$ s can't match $0.04 \%+1$ digit on dc
volts and onms.
- Large, bright, 20,000-count LED display that's quick
- Convenient bench size that won't get "lost" yet
doesnit trowwd. doesn't crowd. Exceptional reliability
 most measurement functions and rat 100 V to
$100 \mu \mathrm{~V}$ to 100 V ac, $\mathrm{O} 1 \Omega$ to $20 \mathrm{M} \Omega$.
 TRMS AC; $10, \mathrm{H} V$ Sensitivity; Hananages as the
Current Yet it's still hall the price you'd expect. Only $£ 199$. $A C$ an Both models feature designed Rugged circuits fuse a minimum of parts - high quality, off-the-shelf
parts - carefully assembled and ter parts - carefully assembled and tested by Keithley.
Outstanding butstanding overload protection and rugged mechanical design keep
both units going even atter severe abue. Ne-year accuracy
specifications minimise recalibration specificications minimise rererealiberation abuse. Onts.
A battery option accuracy
A. rements or for field use.
For complote specifications on the 178 and 179 , call Keithloy
Instruments, 1 Boulton Road, Reading. Phone 0734861287
KEITHLEY
measur mentengineers.

Only fromDARIRON

Dual Trace 5"'scope at 4"price

sas. Vive veracini
20124 Miliano

BUSINESS REPLY SERVICE
Licence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON,

SURREY

CR2 9PS

WIRELESS WORLD Wireless World, January 1979 WW 873 Please arrange for me to receive further details of the products listed, space provided. space provided.
Name
Name of Company
Address

Telephone Number .

\section*{| PUBLISHERS |
| :--- |
| USE ONLY |}

osition in Company
Nature of Company/Business
wish to subscribe to Wireless Wo
VALID FOR SIX MONTHS ONLY

Trade: 270 ACTON LANE, CHISWICK, LONDON W4 5 5G
Retail: 267 ACTON LANE, CHISWICK, LONDON W4 5 DG.

大为 BJ											
			ELECTRICAL AND MECHANICAL ENGINEERING LTD.			3C, Barley Market St. Tavistock, Devon PL19 05F.			TAVISTOCK 5439\qquad		

WIREI-SS WORLD. JANUARY 1979

Electronic Brokers Itd The Test Equipment People

at Voltmeters	ROGERS/SIGN DM. 344 Distortion Meter $20 \mathrm{~Hz}-20 \mathrm{KHz}$
[50ntrol	TEKTRONIX
-	
Moltimbtars	
ADVANCE	T.E.S.
VM77E Traniaitorieg Vortmeter 10 Hz .	
BOONTON	MARCONI
	INSTRUMENTS
BRADLEY	
	UREI
BRUEL \& KJAER	Sonipulse 100A Acoustical Analyser Sonipulse 100A Acoustical Analyser $40-16 \mathrm{KHz} .27 \times 1 / 3$ octabe bandpas
	filers. Micirophone not included E675.00
HEWLETT PACKARD 400 FAC Voltmoter 2 H H24 4 Hz 100	AtMm?
	MARCONI
PHILIPS	INSTRUMENTS
ROHDE \& SCHWARZ	TF. 2162 Step Attonuator DC.1 1 MHz
	ROHDE \& SCHWARZ
SIGN AM324 AC Voltmeter $15 \mathrm{~Hz}-500 \mathrm{Khz}$ $1 \mathrm{mV}-300 \mathrm{~V}$. $£ 60.00$	RBD Attenuator BN $33662 / 60 \mathrm{DC}$.
APIDID	ROHDE \& SCHWARZ RBD UHF Attenuator BN $33661 / 50 \mathrm{DC}$
Moltamitars	Britider
${ }_{\text {Model }} \mathrm{AVO}^{\text {a }}$	MARCONI
Model	INSTRUMENTS
Procision Avo	TF. 2701 In Situ Univeral Bridge ${ }_{\text {E3959.00 }}$
PHILIPS	TF. 1245 ' ${ }^{\prime}$ ' Meter Supplied with TF. 1246 Oscilator $40 \mathrm{KHz}-50 \mathrm{MH}$
PM 24.12 AC/DC Volis \& amps 0 OK	WAYNE KERR
A1PTMEAR	B. 221 (CT.530) Univ. Bridge 0.1% accuracy Q. 221 Low Impedance Adaptor for use
HEWLETT PACKARD	(ester
 	Til
332A Distortion Analyser $5 \mathrm{~Hz}-600 \mathrm{kHz}$. $0.1 \%-100 \%$ also AM detector $\mathbf{£ 4 9 5 . 0 0}$	Equipment
	HEWLETT PACKARD
RACAL 409 Modulation Meter $3-1500 \mathrm{MHz}$. AM	

FLUKE

TEKTRONIX
 Digital Hollifr ADVANCE

FLUKE

 PHILIPS

PM. 66121 Tim

ELECTRONIC BROKERS LIMITED ADD 8% 1ニッ ADD 8° oad, London NW1 2QB TOALL lours 01-837 7781. Telex: 298694 Hours of Business: 9 a.m.-5 p.m. Carriage and Packing charge e
Mon.-Fri.: closed lunch $1-2$ p.m.
items unless otherwise stated.

Fluke Handymeter

Meet Fluke's 8020A-the "multimeter with a difference.'
This unique lightweight $31 / 2$ digit meter not only measures all common voltages, currents and resistances to high precision in 24 ranges-it also measures conductance So for the first time your handheld meter can check printed circuit board leakage, diode junctions, leaky capacitors and so on
At only £112 plus VAT the 8020A has just got to be the handiest meter on the market. And of course it's made by Fluke, the World leaders in measurement. Check these features
\square Large easy to read $31 / 2$ digit LCD display.
$\square 26$ measurement ranges for AC/DC volts, amps, ohms and conductance
$\square 0.25 \%$ VC accuracy over 1 year
\square High power and low power ohms capability
\square Measures to $10,000 \mathrm{M} \Omega$ using two conductance ranges.
\square Long 9 V battery life, typically 200 hours.
\square Fully protected to 250 V on all ranges.
\square Protected against 6KV for 10μ s on any range.
$\square 2$ year warranty on parts and labour.

FLபKE

Fluke International Corporation Colonial Way, Watford, Herts. WD2 4TT Colonial Way, Watford, Herts. WD2 41

Flectronic Brokers The Computer People
 STOP PRESS - LATEST SPECIAL PURCHASES LOW-COST ALPHANUMERIC 21-COLUMN PRINTER MECHANISMS MODEL ANIOIF BY CLAPLUS ASCII KEYBOARDS BY PRINTER MECHA SHINSHU-SEIKI.

SCOOP!

MASSIVE BULK PURCHASE BRINGS YOU HAZELTINE VDUS AT LOWEST EVER PRICES

H1000, ONLY £350 HAZELTINE H1000
SPECIFICATION

Vini~Computer Exchange
 PROCESSORS, PERIPHE
AND ADD-ON MEMORY

expandia

Therace
PR11
P1AB Numeic singee reine dade and ent contror $£ 1,450.0$
TC11 TU56 DECTape drive and control

Printers anc
Terminale LARGE STOCKS OF ASR AND KSR33

Keyboards NEW ASCIKERYOARD

Now available in two versions at Now available in two versions at
GREATLY REDCED PRICES as a result

 k82376 Spast ROM Encoder
All items quoted are refurbished
second-user equipment unless other-
ELECTRONIC BROKERS LIMITED (COMPUTER DIVISION)
49-53 Pancras Road, London NW1 2QB. Tel. 01-837 7781. Telex: 298694
49-53 Pancras Road, London NW1 2QB. Tel. 01-837
ours of business:
a.m.-5 p.m. Mon.-Fri. Closed lunch $1-2$ p.m.
ww - mon \qquad ADO 8\% VAT
A. Marshall (London) Ltd., Dept: WW Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel. 01 1-624 0805 Retail Sales London: 40-42 Cricklewood Bdwy., NW2 3ET. Tel. 01-452 0161/2. Telex: 21492 London: 325 Edgware Rd., W2. Tel. 01-723 4242 . POPULAR INTEGRATED CIRCUITS. (A very small selection Our range covers over $\mathbf{8 , 0 0 0}$ items. The largest selection in

from
listed.

Britain. TOp 200 ICS, TTL, CMOS \& LINEAR

Advertisements accepted up to 12 noon Friday, De-
cember 22 for February issue, subject to space being issua, sub.

DISPLAYED APPOINTMENTS VACANT: $£ 8.50$ per single col. centimetre (min .3 cm). IINE advertisements (run on): $£ 1.20$ per line, minimum three lines. OX NUMBERS: 60p extra. (Replies should be addressed to the Box Number in the dvertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) Classified Adry Leary on 01-261 8508 ,

Land a good job

Your Radio Officer's qualifications can mean a lot

If you're thinking of a shore- based job, here's where you'll tind interesting

 Work, job security, good money, and the opportunity to enjioy all the contornd thehome where you aporeciate them
 teleprinter operating to traffic operating. o apply, you must have a Unite
Kingdom Maritime Radio Communication Operator's General

Commonwealth Administration or the
rish Republic. And, ideally, you should rish Republic. And, ideally, you sh
have some sea-going experience. The starting pay at 25 or over works out at around $£ 4093$; atter three years service this figure rises to around
£50933. (If you are between 19 and 24
your pay on entry will vary between £5093. (if you are between
your pay on entry will vary between
approximately $£ 3222$ and $£ 3732$). approximately $£ 3222$ and $£ 3732$).
Overtime is add itional, and there is a Overtime is additional, and there is a
good pension scheme, sick-pay
benefits, at least 4 weeks' holiday a year, and excellent prospects of
promotion to senior management For further information, please telephone Andree
at the following address: ETE Maritime Radio Services Division (L690), ET17.1.2, Room 643 Union House
EC1A 1AR.

PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS

FD8 FLOPPY DISC £935. BFD68 MINI FLOPPY £522
SOROC 10120 TERMINAL £699 ASS
CASSETTE INTERFACE KIT £18.95

FIRST-CLASS TECHNICAL MAINTENANCE ENGINEER

Required urgently for

AIR STUDIOS

For details of pay, pension and insurance schemes bonuses, holidays, te

Mr. D. Bridges $01-6372758$

RADIO COMMUNICATIONS

Salary range £4620-£4940 p.a.
Radio Engineers required for planning of radio systems, develop-ment and commissioning of equipment involving both design and practical work.

The section is based at Paddington but applicants must be prepared to work at other ocaitions. hey must have had rrain
and experience in mobile voice radio systems and have a know. ledge of data transmission techniques.
Possession of an O.N.C. in Electrical or Electronic Enginering or
yaluable free travel on london transport REE TRAVEL ON LONDIN T
SERYICES AT ALL TIMES
Write for application form quoting ref. PA679/B/3 to Staf Appointments and Development Officer, London Transport,
55 Braadway, London SW1H ODB, or phone $01-2225600$, extension 6

LONDON TRANSPORT

Appointments
WIRELESS WORLD, JANUARY 1979
UNIVERSITY OF LIEERPOOL

We've varietyand interest
to offer youas a
service and testengineer
inStanmore
It's the variety that comes with orking on a wide range of knowing that your skills and experience are playing a vital role in maintaining the critical standards Air Forces for their highly. sophisticated avionics equipment. Working either in aircraft or in
our well equipped and pleasantly our well equipped and pleasantly situated workshopsil instanmore,
Middlesex, you will be involved in the repair, maintenance and overhaul of a variety of advanced airborne and American.

A's workf.
ohave sound practical experience of radio and electronics theory, ranging
from audio to microwave. You should also have experience of using
advanced t fat equipment for advanced test equipment for fault diagnosis, although training can be
We can offer you ane
Walary and benenefits together with really first-class working conditions it's variety and interest your relooking for write now with details of your experience to: Mrs. E. Wagg, 22-26Daston Gardens, Stanmore, Middlesex HA7 18Z.

COMPUTING TECHNIQUES LTD.

CHIEF TEST ENGINEER

to $£ 7,500$

We are looking for a Senior Electronics Test Engineer, who is technically well qualified and keen to run his own department. The
successful candidate will be responsible for building up our existing test department, maintaining quality assurance standards, liaison with the design department, design of test e
and the recruitment of additional staft
Applicants as well as enjoying working with the latest generation of
Logic families, microprocessors and operational amplifiers should be Logic families, microprocessors and in Electronics and have a prove
qualified at least to H.N.C.

SERVICE/COMMISSIONING
ENGINEER to $£ 6,000$
A vacancy exists for a dynamic self-motivated Service /Commissioning Engineer to be responsibe oor customer atter-sales service of ourrange
of analogue and hybrid computers, data loggers and industrial data of analogue and hybrid compuent.
acquisition and control equipmen.
The successful applicant will already have a good knowledge of both analogue and digital electronics, gained either in a similar polition or
within an electronics test environment, preferably with qualifications within an electronard.
to H.N.
The post is based at Billingshurst but with frequent visits throughout
the U.K. and overseas.

TEST ENGINEERS

We have a number of vacancies at various levels within our test department and are keen to interview engine
opportunity to work with state-of-the-art devices.

EMPLOYMENT OPPORTUNITIES

with
H.M. DIPLOMATIC SERVICE
for

RADIO

 OFFICERSMinimum qualification required MRGC or PMG Grade 1 or MPT Grade 1

Write of Telephone for particulars and application forms to:

Recruitment Section

Communications Administration Department
Foreign and Commonwealth Office Hanslope Park, Hanslope
Milton Keynes MK19 7BH
Telephone: 090-851 444. Extension 302

EXPERIMENTAL

 OFFICERTo assist the development and appli-
cation of microprocessors and other

 vides valuable person with equitvelent
graute

qualifications. Salary in a range up to | qualifications |
| :---: |
| 5650 p.a. | Application forms may be obtained

from Registar. The Uniersity.
f.O. Box 147 . Liverpool L69 3BX.

What is there to say about Broadcasting?

Nothing.It speaks for itself.

The advantages of a career in the Studio Capital Projects financial and commercial aspects of project planning and Department of the BBC are self evident. To put the matter simply, broadcasting is exciting.
There is the prestige of working in a department involved in many of television and radio's most brilliant innovations. Then, there's the challenge of planning, installing and commissioning entire sound and vision systems lor film, radio and delevision studios. Your work is varied, stimulating and demanding.
You should therefore be able to demonstrate a thorough understanding of some of the many aspects of broadcasting and have practical experience of the operation maintenance or installation of the relevant equipment. In addition, you must hold a degree, HND or HNC qualification in either Electrical or Electronic engineering, Applied Physics or a City \& Guilds Full Technical Certificate in Telecommunications and be aware of the
execution.
Although you will be based in London, you must be prepared to travel anywhere in the United Kingdom. Salaries, ranging from $£ 4675$ to $£ 5555$ rising to $£ 6140$ (under review) will reflect your qualifications and experience and relocation expenses will be considered. There is, of course, much more to say about broadcasting. If you want to discover just how much, you can begin by phoning George Boston on 01-580 4468 ext 2426. Alternatively, you can write giving full career details to Engineering Recruitment Officer, BBC, Broadcasting House, London WIA 1AA quoting reference no 78.E.4091/WW.

MICHAEL COX ELECTRONICS LIMITED
 technical staff at its Hanworth, Middlesex,

TEST ENGINEERS

Applications should have C and G, ONC and HNC qualifications, and at least two years' experien
Broadcast Television Equipment or a similar field.

TEST EQUIPMENT SPECIALIST

The successful applicant will be responsible for the repair and re-calibration of all the company's test gear
which includes specialised video and audio units as well which includes specialised video and audio units as wel
as a wide range of conventional measuring equipment.

The company is prepared to pay attractive salaries supervision in a relatively informal atmosphere.

Please telephone of write to Mrs. J. Barker Hanworth Trading Estate, Hampton Feltha, Middx.
TW13 6DH. Telephone 01-898 6091
F.W.O.BAUCH LIMITED require

SERVICE ENGINEERS

To work in our modern laboratory on our range of professional audio equipment The successful applicants will have a sound electronic knowledge and a mechanical aptitude
A good understanding of tape recording is desirable.

Applications in writing please to:
Brian Whittaker
FWO. Bauch Ltd
F.W.O. Bauch Lid.,
49 Theobald Street,

Boreham Wood,

Electronics Engineer Qualified to give the master touch to
their Engish translations. of data
theets, catalo heir English translations. of data
sheets, catalogues and manual on
electron ic measuring and com.
 be suct that atier about six months
he she can alsod oransations
The applicant should be willing to Te applicant should be willing
work some some veas in our ranslition
department in Munich where he will
 Starting salary will be in the region of
DM 2.60 per montr) holiday 21 to
27 days depending on age If you are interested, please send Myou are interested, please send your
appication toosther wwith full curricu-
IUT vitae to ROHE $\&$ SH

CAPITAL APPTS
FREE LISTS

$101 \begin{array}{l}\text { Design/ } / \text { Developme } \\ \text { and Test Jobs }\end{array}$

To $£ 6,000$
373557 day:036 9659 eve.

CITY AND HACKNEY HEALTH DISTRICT

RFENGINEER

The Dept. of Medical Electronics, St. Bartholomew's. Hospital, is
seeking an engineer to assist in:

1. The maintenance of hospital VHF and UHF radioteleph
2. The development of VHF biomedical radiotelemetry: 3. The development of computer data links.

The successful applicant must demonstrate a good working
knowledge of FF techniques and understand current digital and knowledge of R
analog circuits.

Postgraduate facilities may be offered to a suitably qualified

Please telephone $01-6009000$ extension 3186, quoting
reference PTB/175 for an application form. New Posts
MEDICAL ELECTRONICS
Due to the expansion of the Electronics Section of the Department of Medical Physics we are now recruiting several
technicians to work on a wide range of advanced medical technicians to
Appointments will be made on the grades of Junior
Technician ($£ 2640$ - $\mathbf{- 3 2 8 8}$), Medical Physics Technician IV
Technician ($£ 2640-$ - 3288), Medical Physics Tec
($£ 34233-$-4448)
(
(£3423-£4488), Medical Physics Technician III
$(£ 4098-£ 5142$) and Senior Electronics Engineer
($5805-$ - 7292).
Further details and an application form available from District Personnel Department, Charing Cross Hospital,
Fulham Palace Road W69H. Tel. 01-748 2040 ext. ${ }^{9997}{ }^{1864}$

radio telephone service ENGINER required in Croydon
Proven ability repar equil
more important than formal
manit

\qquad

Apoontenenc
Ponttocnic
Jandony
January 13.

EEECTRONCSENGINEERS/ TECHNICIANS

We are concerned with the design, development and production of a wide range of sophisticated electronic the
To strengthen our project teams, and meet new orders, we need qualified engineers, male or
female, at all levels who have relevant practical experience as:

Computer Programmers Applications Engineers (Thick Film) Production Engineers Designers (Draughting)

Estimating Engineers
Test Engineers Trials Engineers

Technical Authors Product Support Engineers
Quality Assurance Engineers

Please telephone or write quoting ref. $\mathrm{P} / 15$ enclosing a brief personal
history or complete the
istory, or complete the coupon, and return it to
and Defence Systems Ltd,
Varconi $\begin{aligned} & \text { Browns Lane, The Airport, } \\ & \text { Portsmouth. Tel. } 64966 \\ & \text { Ext } 19 .\end{aligned}$

Space \& Defence

pace a Deience \qquad -
Product Support Engineers A GEC Marconitlectioness Compary Ther

eeping intouch...
re are Europe's leading exporters of two way or low medium capacity multiplex radio links.
radio communications systems and as such can We also require engineers with hand portable radio communications systems and as such can
offer you the chance to work on exciting new offer you the chance to work on exciting new
development projects in some of the best equipped laboratories in the country.
Join us in Cambridge and you will be bene-
fitting from a plan of hat has seen a $£ 7$ million recently invested in hew laboratory, production and headquarters new laboratory, production and
complex on the banks of the Cam.

Electronic Designers

Po make a major contribution to a project team developing low capacity FDM/PCM radio links
Applicants should hold a degree/HND or eqivalent qualification in Electronics and have

Electronic

Development Engineers

 (RF or Digital)RF Engineers to join teams working on the
development of fixed, portable and link products or sub-units. Must have radio communications development experiance and be familiar with
design of VHF/UF communications equipment

The most advanced control system in the world, the Pye MASCOT 1000 provides a unique flexible system

development experience.
Digital engineers to work on computer-based teractive systems, including digital signalling interactive systems, inciuding digital signalling, display. Must have experience of either machine code and assembler language programming or
the design of digital and analogue circuits. We're looking for men and women qualified to B.Sc or HND level, with at least 2 years' exerience.

Systems

Development Engineer
To evaluate technical feasibility of new enquiries and to propose cost-effective engineering solutions. This entails provision of technical
documentation and liasion with production, intallation and field service departments. Applicants should be qualified to Degree, HND
or HNC level and have experience of Systems Engineering, Commissioning, Design/Development or Field Work. Knowledge oo two or more
of the following is essential: HF/VHF/UHF the following is essential: HF/VHF logic and processors; telegraphy, line printers or
exchange practice.居

Mechanical Designers

 To participate in the total design of newproducts. You should have acquired exproducts. You should have acquired ex-
perience of product design for medium to
large quantity production runs, and have lartensive knowledge of design in sheetmetal, plastics and diecast metal. An

PCB Draughtsmen

o join small teams of product engineers. You SCB design layound knowlechniques ond hige the latest PB production methods. Experience of computer aided design and precision plotting is a major asset. A relevan
 either selaries to applicants of either sex, wiog generous relocation an extremely attractive working environment, including sports ground, pavilion and social facilities within the complex.
Living in Cambridge has its own benefits too, not only is it an attractive city, but it offers excellent sporting, recreational and
cultural facilities and a wide choice of custuably priced housing. Added to which,
reandon is quite close to hand, with the new
Lon London is quite close to hand, with the new
M11 opening in Autumn and a rail journey soon to be brought down to under , hour. So,
apply now quoting job title, to Alan Depauw,
Personnel Officer, Pye Telecommunications Ltd., Personnel Officer, Pye Telecommunications Ltd.,
St. Andrews Road, Cambridge, CB4 1 DW .
Telephone Cambridge 61222 Ext. 305 .

Further details and application forms are available
from: The Secretary (Ref WW3), Department of Physics. The Polytechnic
of North London, Hollo of North London, Hollo
way Road, London N78DB (Tel. 01-607 2789, ex 2181).

The Polytechnic of NorthLondon

Congineens

- design / dev - TEST
- FIELD SERVICE High Salaries - Most Areas Phone. 01-7314353 A/pex Personnel ${ }^{(8515)}$

Pye Telecommunications Ltd
St Andrews Road Cambridge England C84 1DP
Tel: : Cambridge (0223) 61222 Telex: 81166 Prtiticom Camege

Timefor a Change?

ENGINEERS \& SOFTWARE SPECIALISTS

Feeling unsettled? Time you did something about it!

We know how it is. \backslash fier all, we sec
are problem fromboth sides. For cammp We problem from both sides. For cxampl
we know that reasons for changing vary greatly - adsancement, or firther expericnce (or even money!) is perhaps only available elscwhere, or, regrettably there may be an int ractable personal problem. But often it is difficult to. pinpoint asingle canse; several factor
probably interact. Whatever voun sithation, Sperry (iyroseope may be able tohelp.

We believe that we have something special to offer:a fricndlys supportive
and highly ercativecuviroupcut: working gronps backed be large compan resourcessadiversity of products and technology which is probably unrivalled in an organisation of onr size, contred on
control svstems and involving precision
mechanical, electronic and software engincering. Toback upall that we hate package.
If you fecl it is time for a change to a sucecssfal and understanding compamy. contact Sperry (iyroscope now: Yon can cither send us bricfdetails or, for further information, write to or phonc I Don Nanning有 Spery (ivoscope Downshire Way Brackincil. Berks. R(ine $1(0)$

Appointments 132

RADIO ENGINEER

The BBC requires lecturers for its Engineering Training Department The Department trains staff for operational, technician and engineering work bath on recruitment and thereafter throughout their careers. The posts concerned deal with technician and engineer training or trion being radio, transmitters and
normal within the field.
The Department is situated in the coüntry at Evesham in Worcestershire The Department is situated in the cound club facilities are excellent. We are looking for enginecrs, male or female, who have some relevant They must have the ability to present ideas clearly and sympathetically to wide range of students. Given these qualities and the right potential, we will provide whatever additional training is necessary.
If you are qualified to degree level or equivalent, in a relevant topic area and would like to know more then write to Mr. J.H. Brooks, Head of Training
Section (Engineering), Engineering Training Department, Wood Norton, Evesham, Worcestershire, Telephone Evesham 41112, Ext. 224.

BBG

Test
 Technicians

Ultra Electronic Communications, part of the inte,-
national Dowty Group are world leaders in sonar buoy design and manufacture advanced railway and train
location networks, sophisticated aircraft communication location networks, sophisticated aircraft
systems and search and rescue beacons.
Our production department requires additional male or female Testers with experience of radio or analogue
circuits and test equipment. Candidates should have circuits and test equipment. Candidates should have
several years of practical experience in this area with or several years of practic
without qual ifications.
Salaries will be negotiable and accompanied by a wide
range of attractive large company benefits, including a range of attractive large company
very generous relocation package.
For further information and an application form, please phone or write to Mr. Gavin Rendall, Personnel
Manager, Ultra Electronic Communications

NATIONAL MARITIME INSTITUTE

feltham, middlesex

 HAS VACANCY FOR COMPUTER STAFFIf y ou are interested in Computing gand preferably have had some experience
in writing programs, we would like to hear trom you in writitg programs. we would like to hear from you.
The National Maritime Institue carries out investigations into the
performance of ships and offshore structurues using towing tanks, water
 Computers are used extensively to analyse experimental data and to carry
out theoretical comp putations. Microperoecs.sors, minicomputers and If you would like to know more about these
Teddington sites, please write or telephone.
Age: At lease 16 on 31 December of the current yea
Minimum Qualifications:
GCE Ordinary Levelions: Grade A, B, C or CSE Grade 1 or equivalent in 4
subiects including English Language and a Scientific or a Mathematical ubject.

Staff restaurant, sports and social sections.

r terms of employment and applic

Feltham, Middlesex T W 140 LO
For technical detail stelephone $01-9770933$ Extension 5070

The Plessey Development Laboratory at Havant, Hampshire, is sub-contractor for the most advanced "Single Channel Radio Access" - allows developed for the British Army. This system - known as network for both voice and data messages.
We are now proceeding with the second phase of development, creating new We are now proceeding with the second phase of developm
Technician Engineers who wish to advance their knowledge.
Technician Engineers who wi
What jobs are on offer?
We are looking for Technician Engineers with experience in industry or H.M. Services to work in the
following fields.
VHF Radio Equipment Development and Evaluation
Successful candidates will be involved in the development of transmitters and receivers and in the
Development and Evaluation of Digital Equipmen
Candidates with a special interest in digital circuits and systems will find opportunities to work under the guidance of experienced senior engineers on the most up-to-date techniques, including microprocessors. What qualifications?
The type of work we do needs people with practical experience of transistorised equipment, a common sense approach and a willingness to work with others towards a common goal. Ideally, you will possess
a City \& Guilds Full Tech. Cert., ONC or HNC. Salaries and career prospects?
We operate a separate structure for Technician Engineers which offers scope for career development. You could become a Principal Technician Engineer in charge of a small section, while the exceptional
younger person would be encouraged to qualify to transfer into the younger person would be encouraged to qualify to transfer into the Professional Engineering grades.
Because our plans for business expansion are soundly based on a full order book for a wide range of both Because our plans for business expansion are soundly based on a full order book for a wide range of both
government sponsored and private venture products, we can offer you both job stability and the up-togovernment sponsored and private venture products, w
date experience which is essential to our future growth.
Technician Engineers are recognised as important members of our teams and are rewarded accordingly. Technician Engineers are recognised as important members of our teams and are rewarded accordingly.
Situated in a semi-rural environment near Portsmouth, Chichester, the South Downs and several
seaside resorts, we are well placed for housing educational Situated in a semi-rural environment near Portsmouth, Chichester, the South Downs and several
seaside resorts, we are well placed for housing, educational and recreational amenities. Generous
relocation assistance will be given as apprepren relocation assistance will be given as appropriate and there is a comprehensive range of large company
benefits. benefits.
Please write with brief career details or telephone for an application form. L. Wise, Recruitment
Manager, The Plessey Company Limited, Martin Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants. Tel: (0705)
486391 . Applications are invited from either sex.

We are one of the World's leading establishments in Motor Vehicle Research -
Further growth combined with an impressive capital investment programme has led

ELECTRONICS ENGINEERS

GRADE 3 ADUIO/VISUAL
 (8801)

COLOUR TELEVISION ENGINEER
 ior the right person. Aply: E. B. Griffithe
TELFURB TV LTD.

The Association has an on-going investment in sophisticated and advanced electron
equipment, which is playing an increasingly important part in all aspects of Motor Vehicle Research.
red to be responsible for the performance and calibrts of Mo Engineers are required to be responsible for the performance and calibration on a
widi range of essential equipment. Applicants should be qualified to degree or
equivalent level and have at least two years experience in the use of electronic equivalent level and have at least two years experience in the use of electronic
measuring, control, communications and computing equipment, preferably gained in

TECHNICIANS (INSTRUMENTATION)
To work closely with the above Engineers and play an important part in the
effriciency and dsmooth runningof new nd existing electronic equipment. We would
like to hear from qualified technicians who are fully faniliar witt electronics and like to hear from qualified technicians who are fully familiar with electronics and
preferably have a knowledge of both analogue and digital integrated circuits. MIRA OFFERS
The opportunity to work in a stimulating and professional environment. A wide.
variety of challenging projects. Exceptional career prospects. The chance to use your variety of challenging projects. Exceptional career prospects. The chance to use you
ability and initiative where it will be appreciated. Good salaries, attractive. fringe
benefits and job security.
If you would like to kn
If you would like to know more about any of the above positions please
Icontact, Ray Cray or alternatively, write with career details to, The Personnel Manager,
Motor Industry Research Wating Street,
Nuneaton, Nuneaton,
Warwickshire Warwickshire
CV1000UU:
Telephone: Telephone:
Nuneaton (0682) 68541.

ELECTRONICS FIELD SERVICE ENGINEERS It's the only pack of cards you'll need

Opportunities in
 Telecommunications with Shell MANCHESTER
 Shen UK has a large Private Telecommunications Network for the transmision of telephope, telegraph, facsimile and computer data we need high calibre saft to SENIOR NETWORK CONTROL ENGINEER

TELECOMMUNICATIONS ENGINEER

To participate in the further planning and development of both the,
Shell UK Private Network and of associated communication services, covering such activities as analysis of present systems, considervictios of more effective alternatives, recommendation of improvements and Responsibilities will
Responsibilitites will in the main cover computer and other data
communication sevvices and there will be some involvemént in
document and document and /or voice communication services. The incumbent will
report to a Senior Telecommunications Engineer/ Analst A formal qualification to degree level in one branch of lyst engineering, including some specialisation in computing or electrical communications engineering subjects supported by extensive
experience in planning and Systersc, is essential tor this positionn. Demonstrater Communication
Data Communicedge of
Dations and Computing Equiment Data Communications and Computing Equiument Systems.
Microprocessor techniques as applied to Data Communication Sortwarecessor Techniques ofues as an applied to Data Communications and
would be of considerable advand and Communication Protocols would be of considerable advantage.
Male /female applica
to: Marijorie Mooney
Shell U.K. Information and Compuing Services
Bowlandswar Wathen
ho co-ordinate the activities and supervise the Network Control staff,
hande no-technical statf liaison and deputise from time to time for
the Head of Telecole A detailed knowledge of modern Network Control.
 diaghosis. An understanding of computer systems (hardware and
software) and modern telephone networks using stored programme
controlled elt controlled exchanges is also required. The applicant would also nee
to demonstrate very high technical standards, and have proven to demonstrate very high
'supervisory experience.
A formal qualificationce.
Engineering with " 0 " least $H N C$ Electrical/ Electronic Engineering with "O" "level English Language is Es apro-requisisite for
this appointment. A degree would be preferred. In addition minimum of two years expererience ein areferred. In addition a
experience in the Computing post and five yea We offer excellent prospects for the f
together with a competitue salary
comer commensurate with the posititions plus
usual fringe benefits usual fringe benefits you would expect
from a large organisation. Substantial relocation expe
be paid where applicable.

Shell

Appointments

Microwave Test Engineers

Plessey Radar is a leader in the design, development and manufacture of ground shipborne radars for a variety of military and crivi app.
involved in an exciting p programme of long term proiects.
We are looking for engineers to carry out test and design evaluation on a wide range of active and passive radar system componenst, sub-assemblies, antennas etc., spanning the frequency range 100 MHz to 18 GHz. Successtu candidates
of small teams in a dynamic, production orientated environment.
of small teams in a dynamic, production orientered environment.
Ideally, you will have a Degree or $\mathrm{HND} / \mathrm{HNC}$ with some experience in this specialised Ifeally you will have a degre or fict athough hhis should not deter those with lesser qualifications from applying. Compentive salaries will be negotiated and generous relocation allowances are avoraben to assist transfer to the Isle of Wight. We are pleasantly located in a rurara environmen near Cowes. The area ofiers a wid
amenities and eass commuting.
amenities and easy commuting.
Please write with brief details or rimg Handley, Resources and Remuneration
Manager,

PROJECT ENGINEERS

Based at
Teddington Studios
THE JOB:

 this field
EXPERIIENCE: EXperience in plamning and executing Television Systems is essential for a senior post.f. For iunior
 work in related filds or operation expenerence may
be acceptable. Atoconatie. revical grounding in Electronics with

 enengining mind.
convinows:
Salary dependentu uon experience will be up
 hoiday, pension nime, subsidised restauram!
and socal lub Fiko appicacaion form please teteephone or wite to Mike Allen, Slaff

Calibration Engineers

Electronic Instruments
Wouldn't you like to work in a well equipped aboratory that'sgot the best in modern equipment Wuldn't you also like to work for a company renowned Wouldn't youalsol like to work for a company renowned
for advanced technological innovations that demand the use of the most modern instruments available? Ferranti are looking for Engineers whose aim is quality, obe responsible for calliation, maintenance and repair of the wide variety of instr
our Development Laboratories.
If you have an HNC/ONC or C. \& G. in electronics
together with the experience and enthusiasm to tackle the job, Ferranti can offer you a good salary productivity bonus scheme, flexible working hours and productivity bon us scheme,
other benefits associated with a large and successful company.
You have nothing to lose, and probably a great deal to gain by talking to us. So why not
quoting ref. no. $\mathrm{D} / 859$ /WW to:
The Personnel Department
The Personnel Department,
Ferranti Computer Systems Limited, Western Road,
Brackeel, Berkhhire. Telephone: 034423232 ext. 471
FERRANTI 昆 Selling technology

MANAGEMENT \& EXECUTIVE SELECTION

SALES ENGINEERS

SURREY, MANCHESTER/CHESTER Join one of the fastest growing Digital Multimeter com panies in Britain
Previous selling experience is not essentia
Applicants should have a knowledge of digital instrumen tation and a strong desire to be successful in marketing.
An excellent salary package is offered together with norma company benefits. A company car will be provided

Apply in writing to

We are a privately owned company holding franchises for leading
makers of video and audio equipment.
EXPERIENCED ENGINEER
Located at our Southampton branch to be responsible for the operation
of our Service Department, including work at the bench, carrying out epais on site, instalantation, warranties and providing a arrying out
sechnical
serice to oor saltes staft', The successful a applicant will also be service to our sales staft. The successtul applican
expected to develop the service aspect of our business.
If you have a knowledge of Sony, National, J.V.
like equipment we would like to hear from you.
Pease apply in writing giving details of age, experience and qualifica-
Mr. T. J. Holdoway, Chairman/Managing Director
VIDEO SOUTH LTD.

VERMONT RESEARCH LIMITED
cleeve road, leatherhead, surrey
Telophone: Leatherhead 7622

Appointments

Plan Integrated Communications Systems with Racal BACEIL

Communicate with Racal

Racal Communications Systems Limited have vacancies for engineers in their SYSTEM \&
INTALATION PANNING DPPATMENTTTe Department is isponsible for he edesign
of a wide range of radio systems from small networks to multi-milion pound turnkey projects The work is challenging and stimulating, entailing contact with potential customers and
direct liaison with our own Marketing and Design stafis. The equipment involved in these projects includes a compiete range of local and remotely
ontroled MF HF VFF radio equipment antennas. terminal and ancillary units. radio relay and power sources, which can be installed in stataicicor transportatle environments. Senior Planning Engineers
To take total responsibility for planning and presenting responsive and cost effective,
communication system ina highty compeetitive field. We are ooking or engineers with
experiencein communication systems in a highly competitive field. We are looking for engine.
experience in this tied. who wish to extend their responsibility and experience. Planning Engineers
To work on large proiects with senior staff or on smaller proiects with minimum supervsicn
Technical or operational experience in radio communications is a basic requirement tor Technical or or
these posts.
 membershio of an excellent Pension
will be available in appropriate cases. Please apply to Please applyo.
The Personnel Manager Racal Communications Systems Limited
Western Road. Brackneil. Berks. Tel: Bracknell 3244 . Ext. 149 .

Laboratory Technicians
Sony Broadcast Limited is a subsidiary of the
Sony Corporation of Tokyo, concerned with the manufacture and sales of the finest range of
professional Broadcast Equipment available today.
today.
Our policy is that the product delivered to the customer should be of the highest quality.
We are currently seeking the following perso to join our expanding engineering facilities at Basingstoke.
LABORATORY TECHNICIANS Technician: Development Laboratory The successful applicant will have a working
knowledge of analogue and digital electronics, knowledge of analogue and
which will be applied to the construction and testing of prototype circuits under the
supervision of the designers. Accurate and supervision of the designers. Accurate and
professional standards of work will be required.
Previous exprience in tel evision is not essential Professional standards of work will be required.
Previous experience in television is not essential
however, the postholder can expect to learn however, the postholder can expect to learn
more about this rapidly advancing field of more about.
technology.
Technician: Quality Assurance The Sony reputation for ultimate performance
and reliability is maintained by rigorous pre and reliability is maintained by rigorous pre-
dispatch testing of equipment before delivery dispatch testing of equipment before delivery to
the customer. Practical experience with television
systems and systems and equipment will be an advantage fo
this post. This successful aplicant will be this post. This successful applicant will be
working with state-of-the-art cameras, VTRs and associated equipment.
Starting salaries will be in the range $£ 2,700$ Starting salaries will be in the range $£ 2,700$
$£ 3,600$ dependent on qualifications and experience.
If you feel that you have the background, and
are motivated by the chall enge of contributing to are motivated by the challenge of contributing to
the growth of a dynamic new company, please the growth of a dynamic new company,
write, giving details of your education,
experience and curren write, giving details of your education,
experience and current position to: dhersonnel Manager SONY Som

OREIGN AND COMMONWEALTH OFFICE

has vacancies for

RADIO TECHNICIANS

to carry out shift duties concerned with MF and $H F$ Broadcasting systems
involving frequency changing, fault find ding, routine maintenance, etc. Applicants should have a minimum qualification of C City and Guilds Intermediate
cerificate in Telecommunications or its equivalent and have a sound knowledge certiticate in Tetecomumnications or its equivalent and have a sound knowledg
ot the principeses of telecemmuniactions and radio. together with experience o
main mainestes cand dates will test equipmen.
 Salary is according to age eg eg $£ 3176$ per annum at
increments to $£ 3700$ at age 25 (or ove incremenis to $£ 3700$ at age 25 (or over on entry) and toa a maximum of an $£ 4252$
per annum. The appointment attracts 4 weeks' paid holiday and prospects of pension
employment. mome

Leeds city council
Lepartment of Education
School of Humads Porties

SENIOR TECHNICIAN

T3/4. $£ 3,732-£ 4,632$ (plus technician qualification allowance) Responsible for the care and operation of two psychology laboratories.
Duties will include the design, construction, repair and maintenance of Duties will include the design, construction, repair and maintenance of,
electronic and laboratory equipment. Ideally applicants might hold a
City and Guilds Technician Certificate in Electronics or equivalent City and Guilds Technician Certificate in Electronics or equivalent
qualification, although relevant practical experience is equally qualification, although relevant practical experience is equally
important, and design and general engineering abilities are desirable. Application forms (quoting Ref. No.) from the Administrative Services Officer, Leeds Polytechnic, Calverloy Street, Leeds
LS1 3 HE . Please enclose s.a.e. Closing date: 14 days after

WATKINS-JOHNSON LIMITED Wakins-Johnson are world leaders in the manufacture of broadband receiving
equipment from 1 MHz to 40 GHz . The company's K facility at Windsor

 all emplotes sexth a will to succeed. At this time we have an urgent requirement
for the ofollowing hersonnel

P.D.S. OFFICER

Responsible for organising and running the UK facility's entire post design
sevicices syster

 those overseas. A modest amount of overseas travel on company P.D.S. and
training will be required. We expect that the successful candidate will be qualifie
electronics and have had 1 year's experience in industry.

RADIO SERVICE ENGINEER
(Solary Range: $£ 3,840$ to $£ 4,764$ per annum)
Responsible for the senvicing of the full range of the company's equipment from
HF through to 40 GHz . The job requires a good working knowledge of digital and
 As well as an intelligent technical approach, the job requires the ability to be bble
to talk to our customers in a satisfactory manner and to assume a level of We offer excellent tringe benefits including
We offer excell
\star FOUR WEKS Hine bentidar
\star ANNUA BONUS
 * NON-CONTRIBUTORY PENSION PLAN
watkins johnson limited

Phone for application form to: Miss Bux, Datek Systems Limited, 849
Harrow Road, Wembley, Middllesex. Tol: 01 O1-904 0061 .

Join the leaders in Sophisticated Metrology

Based in Leicester, Rank Taylor Hobson is engaged in the
design, manufacture and marketing of high precision design, manuacture and marketing of high precision world leaders, bring together precision, mechanical,
electronic and optical engineering, including mini/micro electronic and optical tongmesuring systems. Our order books computer application to measuring syle fuls. Which means we can offer tremendous future prospects to talented and ambitious Electronics professionals. Our success means we
need to fill these three important and challenging positions. ELECTRONIC PLANNING ENGINEER We are looking for an Engineer of HNC Electronic
Engineering standard to produce electronic manufa Engineering standard to produce electronic manufacturing
data for precision instrument sub-systems. This will involve data for precision instrument sub-systems.
the compilation and illustration of data sheets for the the compino
production P.C.B.s, cableforms and electronic units and involvement in the specification of the necessary test equipment and the mel
for volume production.
Applicants must have spent at least two years in a similar position and have had experience in control electronics preferably to Ministry standards and specifications. Knowledge of vo
ELECTRONIC DESIGN ENGINEERSERVOSYSTEMS
We are looking for an Engineer with sound experience on
low power servo circuits and mechanisms who can apply this low power servo circuits and mechanisms who can apply this
expertise to the challenge encountered in the precision positioning and precise rotational acc
ELECTRONIC TEST ENGINEER
With experience of testing and fault finding on complex
digital and analogue controls and/or computer circuits and digital and analogue controls and/or computer circuits and systems. Ap
standard.
All these vacancies offer an attractive salary, participation in an added value incentive scheme and addititonal benefits which include assistance with re-location expenses where appropriate. Please telephone or write for an application

Mr. J. Dennis, Assistant Personnel Manager,
RANK TAYLOR HOBSON
P.O. Box 36, Guthlaxton Street, Leicester

LE2 OSP. TEL: 053323801.

ARTICLES FOR SALE

Interport Mains-Store Litd POB 51, London W11 $3 B 2$
Tel: 01-727 7042 or 022510916
\longrightarrow

* Ring Derek Pattinson now and discuss your requirementis.
Crofton Electronics Ltd Crofton Electronics Ltd
35 Grosvenor Road,

Twickenham, Middlesex.

$$
\begin{aligned}
& \text { FOR } \\
& \text { CLASSIFIED } \\
& \text { ADVERTISING } \\
& \text { RING } \\
& \text { BARRY } \\
& \text { LEARY } \\
& \text { ON } \\
& 01-2618508
\end{aligned}
$$

'Here's why you

* Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers. * World-wide proven relia
* Low servicing costs * Large mirror scale meter. * Fully protected against overload. * Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors. sales service $16.60-£ 32.00+$ VAT
Prices from Prices from $£ 15.60-£ 32.00+$ VAT whole range including accessories 픅 ELECTRONIC 그 = BROKERS LIMITED 49-53 Pancras Rood, London NW1 20 B.
Tel: $01-837$ 7781. Telex: 298694.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 125-143

In difficulty send direct, plus 20p P \& P Send S.A.E. for free copy of colour catalogue detaling complete range. Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

Parallel tracking, it cleans whilst disc plays. Engineered in chromed steel and with two bases to suit all decks. Pat. Pending Ref101A Brit. Reg. Des. No. 982790 E3.97 inc. VAT U.S.A. Reg. Des. No. 247622

Everything necessary for cleaning heads, capstan and pinch wheel on all types of
recorders.
Cleaning and polishing pads, cleaning liquid Cleaning and polshing pads, cleaning liquid
and brush inspection mirror included. and brush inspection mirror included.
Standard Pack Ref 25 f1.59inc. VAT Standard Pack Ret 25 E1.99 inc. VAT
Pemanent Storage Box with cleaning cloth Evit. Pat. No. 1465069 Ref 99 E2.70 inc. VAT

